Suppr超能文献

深度学习在遗传学研究中的应用的知识结构与新兴趋势:一项文献计量分析[2000 - 2021]

Knowledge structure and emerging trends in the application of deep learning in genetics research: A bibliometric analysis [2000-2021].

作者信息

Zhang Bijun, Fan Ting

机构信息

Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China.

Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, China.

出版信息

Front Genet. 2022 Aug 23;13:951939. doi: 10.3389/fgene.2022.951939. eCollection 2022.

Abstract

Deep learning technology has been widely used in genetic research because of its characteristics of computability, statistical analysis, and predictability. Herein, we aimed to summarize standardized knowledge and potentially innovative approaches for deep learning applications of genetics by evaluating publications to encourage more research. The Science Citation Index Expanded (SCIE) database was searched for deep learning applications for genomics-related publications. Original articles and reviews were considered. In this study, we derived a clustered network from 69,806 references that were cited by the 1,754 related manuscripts identified. We used CiteSpace and VOSviewer to identify countries, institutions, journals, co-cited references, keywords, subject evolution, path, current characteristics, and emerging topics. We assessed the rapidly increasing publications concerned about deep learning applications of genomics approaches and identified 1,754 articles that published reports focusing on this subject. Among these, a total of 101 countries and 2,487 institutes contributed publications, The United States of America had the most publications (728/1754) and the highest h-index, and the US has been in close collaborations with China and Germany. The reference clusters of SCI articles were clustered into seven categories: deep learning, logic regression, variant prioritization, random forests, scRNA-seq (single-cell RNA-seq), genomic regulation, and recombination. The keywords representing the research frontiers by year were prediction (2016-2021), sequence (2017-2021), mutation (2017-2021), and cancer (2019-2021). Here, we summarized the current literature related to the status of deep learning for genetics applications and analyzed the current research characteristics and future trajectories in this field. This work aims to provide resources for possible further intensive exploration and encourages more researchers to overcome the research of deep learning applications in genetics.

摘要

深度学习技术因其可计算性、统计分析和可预测性等特点,已在基因研究中得到广泛应用。在此,我们旨在通过评估相关出版物,总结基因深度学习应用的标准化知识和潜在创新方法,以鼓励更多研究。我们在科学引文索引扩展版(SCIE)数据库中搜索了与基因组学相关的深度学习应用出版物。纳入了原创文章和综述。在本研究中,我们从1754篇相关手稿引用的69806条参考文献中得出了一个聚类网络。我们使用CiteSpace和VOSviewer来识别国家、机构、期刊、共被引参考文献、关键词、主题演变、路径、当前特征和新兴主题。我们评估了关于基因组学方法深度学习应用的快速增长的出版物,并识别出1754篇发表专注于该主题报告的文章。其中,共有101个国家和2487个机构发表了相关文章,美国发表的文章最多(728/1754)且h指数最高,并且美国一直与中国和德国保持密切合作。SCI文章的参考文献聚类分为七类:深度学习、逻辑回归、变异优先级排序、随机森林、单细胞RNA测序(scRNA-seq)、基因组调控和重组。代表各年份研究前沿的关键词分别是预测(2016 - 2021年)、序列(2017 - 2021年)、突变(2017 - 2021年)和癌症(2019 - 2021年)。在此,我们总结了当前与基因应用深度学习现状相关的文献,并分析了该领域当前的研究特征和未来发展轨迹。这项工作旨在为可能的进一步深入探索提供资源,并鼓励更多研究人员攻克基因深度学习应用的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c8/9445221/477277d4fea7/fgene-13-951939-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验