Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States of America.
Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States of America.
J Neural Eng. 2022 Sep 23;19(5):056019. doi: 10.1088/1741-2552/ac90ed.
To determine the effect of epilepsy on intracranial electroencephalography (EEG) functional connectivity, and the ability of functional connectivity to localize the seizure onset zone (SOZ), controlling for spatial biases.We analyzed intracranial EEG data from patients with drug-resistant epilepsy admitted for pre-surgical planning. We calculated intracranial EEG functional networks and determined whether changes in functional connectivity lateralized the SOZ using a spatial subsampling method to control for spatial bias. We developed a 'spatial null model' to localize the SOZ electrode using only spatial sampling information, ignoring EEG data. We compared the performance of this spatial null model against models incorporating EEG functional connectivity and interictal spike rates.About 110 patients were included in the study, although the number of patients differed across analyses. Controlling for spatial sampling, the average connectivity was lower in the SOZ region relative to the same anatomic region in the contralateral hemisphere. A model using intra-hemispheric connectivity accurately lateralized the SOZ (average accuracy 75.5%). A spatial null model incorporating spatial sampling information alone achieved moderate accuracy in classifying SOZ electrodes (mean AUC = 0.70, 95% CI 0.63-0.77). A model incorporating intracranial EEG functional connectivity and spike rate data further outperformed this spatial null model (AUC 0.78,= 0.002 compared to spatial null model). However, a model incorporating functional connectivity without spike rate data did not significantly outperform the null model (AUC 0.72,= 0.38).Intracranial EEG functional connectivity is reduced in the SOZ region, and interictal data predict SOZ electrode localization and laterality, however a predictive model incorporating functional connectivity without interictal spike rates did not significantly outperform a spatial null model. We propose constructing a spatial null model to provide an estimate of the pre-implant hypothesis of the SOZ, and to serve as a benchmark for further machine learning algorithms in order to avoid overestimating model performance because of electrode sampling alone.
为了确定癫痫对颅内脑电图(EEG)功能连接的影响,以及功能连接定位发作起始区(SOZ)的能力,我们控制了空间偏差。我们分析了因术前计划而入院的耐药性癫痫患者的颅内 EEG 数据。我们计算了颅内 EEG 功能网络,并使用空间子采样方法确定功能连接的变化是否使 SOZ 发生偏侧化,从而控制空间偏差。我们开发了一种“空间零模型”,仅使用空间采样信息定位 SOZ 电极,而忽略 EEG 数据。我们比较了这种空间零模型与包含 EEG 功能连接和发作间期尖峰率的模型的性能。大约有 110 名患者被纳入研究,尽管在不同的分析中患者人数有所不同。控制空间采样后,SOZ 区域的平均连接性低于对侧半球相同解剖区域的连接性。使用半球内连接性的模型准确地对 SOZ 进行了偏侧化(平均准确性为 75.5%)。仅包含空间采样信息的空间零模型在对 SOZ 电极进行分类方面具有中等准确性(平均 AUC = 0.70,95%CI 0.63-0.77)。包含颅内 EEG 功能连接和尖峰率数据的模型在这一空间零模型上进一步表现更好(AUC 0.78,与空间零模型相比,p=0.002)。然而,包含功能连接而不包含尖峰率数据的模型并未显著优于零模型(AUC 0.72,p=0.38)。SOZ 区域的颅内 EEG 功能连接降低,发作间期数据可预测 SOZ 电极的定位和偏侧性,但是包含无发作间期尖峰率的功能连接的预测模型并未显著优于空间零模型。我们建议构建空间零模型,以提供 SOZ 植入前假设的估计,并作为进一步机器学习算法的基准,以避免因电极采样而高估模型性能。