Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
Immunology Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
Methods Mol Biol. 2022;2574:309-366. doi: 10.1007/978-1-0716-2712-9_16.
Paired- and single-chain T cell receptor (TCR) sequencing are now commonly used techniques for interrogating adaptive immune responses. TCRs targeting the same epitope frequently share motifs consisting of critical contact residues. Here we illustrate the key features of tcrdist3, a new Python package for distance-based TCR analysis through a series of three interactive examples. In the first example, we illustrate how tcrdist3 can integrate sequence similarity networks, gene-usage plots, and background-adjusted CDR3 logos to identify TCR sequence features conferring antigen specificity among sets of peptide-MHC-multimer sorted receptors. In the second example, we show how the TCRjoin feature in tcrdist3 can be used to flexibly query receptor sequences of interest against bulk repertoires or libraries of previously annotated TCRs based on matching of similar sequences. In the third example, we show how the TCRdist metric can be leveraged to identify candidate polyclonal receptors under antigenic selection in bulk repertoires based on sequence neighbor enrichment testing, a statistical approach similar to TCRNET and ALICE algorithms, but with added flexibility in how the neighborhood can be defined.
现在,配对和单链 T 细胞受体(TCR)测序是用于研究适应性免疫反应的常用技术。靶向同一表位的 TCR 经常共享由关键接触残基组成的基序。在这里,我们通过三个交互示例来说明新的 Python 包 tcrdist3 的关键特性,用于基于距离的 TCR 分析。在第一个示例中,我们说明了 tcrdist3 如何整合序列相似性网络、基因使用图和背景调整的 CDR3 徽标,以识别在肽-MHC-多聚体分拣受体集中赋予抗原特异性的 TCR 序列特征。在第二个示例中,我们展示了 tcrdist3 中的 TCRjoin 功能如何用于根据相似序列的匹配,灵活地查询感兴趣的受体序列,以对抗原库或以前注释的 TCR 库进行查询。在第三个示例中,我们展示了如何利用 TCRdist 度量来识别抗原选择下的候选多克隆受体 bulk 库,基于序列邻域富集测试,这是一种类似于 TCRNET 和 ALICE 算法的统计方法,但在定义邻域的方式上具有更大的灵活性。