Westermayr Julia, Chaudhuri Shayantan, Jeindl Andreas, Hofmann Oliver T, Maurer Reinhard J
Department of Chemistry, University of Warwick Coventry CV4 7AL UK
Centre for Doctoral Training in Diamond Science and Technology, University of Warwick Coventry CV4 7AL UK.
Digit Discov. 2022 Jun 6;1(4):463-475. doi: 10.1039/d2dd00016d. eCollection 2022 Aug 8.
The computational prediction of the structure and stability of hybrid organic-inorganic interfaces provides important insights into the measurable properties of electronic thin film devices, coatings, and catalyst surfaces and plays an important role in their rational design. However, the rich diversity of molecular configurations and the important role of long-range interactions in such systems make it difficult to use machine learning (ML) potentials to facilitate structure exploration that otherwise requires computationally expensive electronic structure calculations. We present an ML approach that enables fast, yet accurate, structure optimizations by combining two different types of deep neural networks trained on high-level electronic structure data. The first model is a short-ranged interatomic ML potential trained on local energies and forces, while the second is an ML model of effective atomic volumes derived from atoms-in-molecules partitioning. The latter can be used to connect short-range potentials to well-established density-dependent long-range dispersion correction methods. For two systems, specifically gold nanoclusters on diamond (110) surfaces and organic π-conjugated molecules on silver (111) surfaces, we train models on sparse structure relaxation data from density functional theory and show the ability of the models to deliver highly efficient structure optimizations and semi-quantitative energy predictions of adsorption structures.
有机-无机混合界面结构与稳定性的计算预测为电子薄膜器件、涂层和催化剂表面的可测量性质提供了重要见解,并在其合理设计中发挥着重要作用。然而,此类系统中分子构型的丰富多样性以及长程相互作用的重要作用,使得利用机器学习(ML)势来促进结构探索变得困难,否则这需要计算成本高昂的电子结构计算。我们提出了一种ML方法,通过结合在高级电子结构数据上训练的两种不同类型的深度神经网络,实现快速且准确的结构优化。第一个模型是基于局部能量和力训练的短程原子间ML势,而第二个是源自分子中原子划分的有效原子体积的ML模型。后者可用于将短程势与成熟的密度依赖长程色散校正方法相连接。对于两个系统,具体而言是金刚石(110)表面上的金纳米团簇和银(111)表面上的有机π共轭分子,我们基于密度泛函理论的稀疏结构弛豫数据训练模型,并展示了模型进行高效结构优化以及对吸附结构进行半定量能量预测的能力。