Suppr超能文献

语言理解过程中预测模型的快速适应:非周期性脑电图斜率、个体阿尔法频率和思想密度调节实时模型更新中的个体差异。

Rapid adaptation of predictive models during language comprehension: Aperiodic EEG slope, individual alpha frequency and idea density modulate individual differences in real-time model updating.

作者信息

Bornkessel-Schlesewsky Ina, Sharrad Isabella, Howlett Caitlin A, Alday Phillip M, Corcoran Andrew W, Bellan Valeria, Wilkinson Erica, Kliegl Reinhold, Lewis Richard L, Small Steven L, Schlesewsky Matthias

机构信息

Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, SA, Australia.

Innovation, Implementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, SA, Australia.

出版信息

Front Psychol. 2022 Aug 26;13:817516. doi: 10.3389/fpsyg.2022.817516. eCollection 2022.

Abstract

Predictive coding provides a compelling, unified theory of neural information processing, including for language. However, there is insufficient understanding of how predictive models adapt to changing contextual and environmental demands and the extent to which such adaptive processes differ between individuals. Here, we used electroencephalography (EEG) to track prediction error responses during a naturalistic language processing paradigm. In Experiment 1, 45 native speakers of English listened to a series of short passages. Via a speaker manipulation, we introduced changing intra-experimental adjective order probabilities for two-adjective noun phrases embedded within the passages and investigated whether prediction error responses adapt to reflect these intra-experimental predictive contingencies. To this end, we calculated a novel measure of speaker-based, intra-experimental surprisal ("speaker-based surprisal") as defined on a trial-by-trial basis and by clustering together adjectives with a similar meaning. N400 amplitude at the position of the critical second adjective was used as an outcome measure of prediction error. Results showed that N400 responses attuned to speaker-based surprisal over the course of the experiment, thus indicating that listeners rapidly adapt their predictive models to reflect local environmental contingencies (here: the probability of one type of adjective following another when uttered by a particular speaker). Strikingly, this occurs in spite of the wealth of prior linguistic experience that participants bring to the laboratory. Model adaptation effects were strongest for participants with a steep aperiodic (1/f) slope in resting EEG and low individual alpha frequency (IAF), with idea density (ID) showing a more complex pattern. These results were replicated in a separate sample of 40 participants in Experiment 2, which employed a highly similar design to Experiment 1. Overall, our results suggest that individuals with a steep aperiodic slope adapt their predictive models most strongly to context-specific probabilistic information. Steep aperiodic slope is thought to reflect low neural noise, which in turn may be associated with higher neural gain control and better cognitive control. Individuals with a steep aperiodic slope may thus be able to more effectively and dynamically reconfigure their prediction-related neural networks to meet current task demands. We conclude that predictive mechanisms in language are highly malleable and dynamic, reflecting both the affordances of the present environment as well as intrinsic information processing capabilities of the individual.

摘要

预测编码为神经信息处理提供了一个引人注目的统一理论,包括语言方面。然而,对于预测模型如何适应不断变化的语境和环境需求,以及个体之间这种适应过程的差异程度,我们还缺乏足够的了解。在这里,我们使用脑电图(EEG)来追踪自然语言处理范式中的预测误差反应。在实验1中,45名以英语为母语的人听了一系列短文。通过说话者操纵,我们为短文中嵌入的双形容词名词短语引入了实验内形容词顺序概率的变化,并研究预测误差反应是否会适应以反映这些实验内的预测偶然性。为此,我们计算了一种基于说话者的、实验内意外性的新度量(“基于说话者的意外性”),它是在逐次试验的基础上定义的,并将具有相似含义的形容词聚类在一起。关键的第二个形容词位置处的N400振幅被用作预测误差的结果度量。结果表明,在实验过程中,N400反应与基于说话者的意外性相协调,这表明听众迅速调整他们的预测模型以反映局部环境偶然性(这里指:特定说话者说出时一种形容词跟随另一种形容词的概率)。令人惊讶的是,尽管参与者带着丰富的先前语言经验进入实验室,这种情况还是发生了。对于静息EEG中具有陡峭非周期性(1/f)斜率和低个体阿尔法频率(IAF)的参与者,模型适应效应最强,观念密度(ID)呈现出更复杂的模式。这些结果在实验2中由40名参与者组成的单独样本中得到了重复,实验2采用了与实验1高度相似的设计。总体而言,我们的结果表明,具有陡峭非周期性斜率的个体最强烈地将其预测模型适应于特定语境的概率信息。陡峭的非周期性斜率被认为反映了低神经噪声,这反过来可能与更高的神经增益控制和更好的认知控制相关。具有陡峭非周期性斜率的个体因此可能能够更有效、动态地重新配置他们与预测相关的神经网络,以满足当前的任务需求。我们得出结论,语言中的预测机制具有高度的可塑性和动态性,既反映了当前环境的条件,也反映了个体的内在信息处理能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e76/9461998/ba63ef295004/fpsyg-13-817516-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验