Suppr超能文献

从宏基因组和代谢组学角度分析多糖与肠道微生物群互作的协同机制。

The combination of microbiome and metabolome to analyze the cross-cooperation mechanism of polysaccharide with the gut microbiota and .

机构信息

State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.

Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.

出版信息

Food Funct. 2022 Oct 3;13(19):10069-10082. doi: 10.1039/d2fo02336a.

Abstract

polysaccharide (EPP) is a functional compound in . At present, it is generally recognized that plant polysaccharides can regulate the intestinal microecology, but there are few studies on EPP. In this study, we used the digestive model (stomach-small intestine-colon) and a mouse model to study the effect of EPP on intestinal microecology and the mechanism. Also, combined with the microbiome and metabolome analysis methods, the interaction network mechanism of EPP-gut microbiota-metabolites-metabolism was investigated. After EPP was digested by human intestinal microbiota, the microbial diversity changed, with an increase in the relative abundance of and a decrease in the abundance of , and . After metabolism in mice, the concentration of short-chain fatty acids increased, the abundances of Muribaculaceae and increased, and those of Lachnospiraceae and decreased. Both and experiments revealed that EPP can downregulate the expression of 15 enzymes involved in porphyrin metabolism. In addition, the metabolome results also confirmed that alanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and glycine, serine and threonine metabolism are regulatory pathways of EPP. Tryptophan, ornithine, tyrosine, leucine, alanine and serine are hallmark metabolites. The cross-cooperation network greatly influenced the microbiota (, Lachnospiraceae), metabolites (tryptophan, beta-D-fructose 1,6-bisphosphate), and metabolism (glycosphingolipid biosynthesis), suggesting that they may be the key factors mediating the metabolic function of EPP. Therefore, EPP has the effect of enhancing the proliferation of gut-beneficial bacteria that metabolize polysaccharides and produce valuable metabolites.

摘要

多糖(EPP)是一种功能性化合物,目前普遍认为植物多糖可以调节肠道微生态,但对 EPP 的研究较少。本研究采用消化模型(胃-小肠-结肠)和小鼠模型,研究 EPP 对肠道微生态的影响及其作用机制。同时,结合宏基因组和代谢组分析方法,研究 EPP-肠道微生物群-代谢物-代谢的相互作用网络机制。EPP 经人肠道微生物群消化后,微生物多样性发生变化,相对丰度增加, 、 、 减少。在小鼠体内代谢后,短链脂肪酸浓度增加, Muribaculaceae 和 丰度增加,Lachnospiraceae 和 减少。 和 实验均表明,EPP 可下调 15 种参与卟啉代谢的酶的表达。此外,代谢组学结果也证实,EPP 可调控丙氨酸代谢、苯丙氨酸、酪氨酸和色氨酸生物合成以及甘氨酸、丝氨酸和苏氨酸代谢等代谢途径。色氨酸、鸟氨酸、酪氨酸、亮氨酸、丙氨酸和丝氨酸是标志性代谢物。交叉合作网络极大地影响了微生物群( 、Lachnospiraceae)、代谢物(色氨酸、β-D-果糖 1,6-二磷酸)和代谢(糖脂生物合成),表明它们可能是介导 EPP 代谢功能的关键因素。因此,EPP 具有增强有益肠道细菌增殖的作用,这些细菌可以代谢多糖并产生有价值的代谢物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验