Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg.
University of Luxembourg, Esch-sur-Alzette, Luxembourg.
Nature. 2022 Sep;609(7928):718-721. doi: 10.1038/s41586-022-05069-2. Epub 2022 Sep 12.
Coming up with sustainable sources of electricity is one of the grand challenges of this century. The research field of materials for energy harvesting stems from this motivation, including thermoelectrics, photovoltaics and thermophotovoltaics. Pyroelectric materials, converting temperature periodic variations in electricity, have been considered as sensors and energy harvesters, although we lack materials and devices able to harvest in the joule range. Here we develop a macroscopic thermal energy harvester made of 42 g of lead scandium tantalate in the form of multilayer capacitors that produces 11.2 J of electricity per thermodynamic cycle. Each pyroelectric module can generate up to 4.43 J cm of electric energy density per cycle. We also show that two of these modules weighing 0.3 g are sufficient to sustainably supply an autonomous energy harvester embedding microcontrollers and temperature sensors. Finally, we show that for a 10 K temperature span these multilayer capacitors can reach 40% of Carnot efficiency. These performances stem from (1) a ferroelectric phase transition enabling large efficiency, (2) low leakage current preventing losses and (3) high breakdown voltage. These macroscopic, scalable and highly efficient pyroelectric energy harvesters enable the reconsideration of the production of electricity from heat.
开发可持续的电力来源是本世纪的重大挑战之一。能源采集材料的研究领域正是源于这一动机,包括热电、光伏和热光伏。虽然我们缺乏能够在焦耳范围内进行采集的材料和设备,但热释电材料可以将电的温度周期性变化转换为电能,被视为传感器和能源采集器。在这里,我们开发了一种由 42 克钽酸铅钪组成的宏观热能收集器,采用多层电容器的形式,每个热力学循环可产生 11.2 焦耳的电能。每个热释电模块每循环可产生高达 4.43 J/cm 的电能密度。我们还表明,两个重 0.3 克的此类模块足以可持续地为嵌入微控制器和温度传感器的自主能源收集器提供能量。最后,我们表明,对于 10 K 的温度跨度,这些多层电容器可以达到卡诺效率的 40%。这些性能源于:(1) 铁电相转变实现高效率;(2) 低漏电流防止损耗;(3) 高击穿电压。这些宏观、可扩展且高效的热释电能量收集器使我们能够重新考虑利用热能发电。