Suppr超能文献

基于质荷比预检索的深度学习实现电子电离质谱文库检索。

Deep learning under mass-to-charge ratio pre-retrieval to realize electron ionization mass spectrometry library retrieval.

机构信息

Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, P. R. China.

Zhejiang Engineering Research Center of Advcanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, P. R. China.

出版信息

Rapid Commun Mass Spectrom. 2022 Dec 30;36(24):e9398. doi: 10.1002/rcm.9398.

Abstract

RATIONALE

Gas chromatography-mass spectrometry (GC-MS) is an analytical technique widely used in materials science, biomedicine, and other fields. The target compound in the experiment is identified by searching for its mass spectrum in a large mass spectrum database using some algorithms. This work introduces the use of deep learning ranking for the identification of small molecules using low-resolution electron ionization MS. Because different spectra are often very similar, the algorithm produces wrong search results, and the search accuracy needs improvement. Due to the library's large amount of data, the algorithm sometimes requires a large amount of calculation and is very time consuming.

METHODS

Given these two problems, this work aims to develop a model for ranking based on mass-to-charge ratio (m/z) pre-retrieval method combined with deep learning to improve search accuracy and reduce the algorithm's computational time. The master spectral library maintained by the National Institute of Standards and Technology is used as the reference library for all the experiments, and the replicate library is used as the query library to evaluate the method's performance.

RESULTS

Compared with non-machine learning algorithms, the combination of m/z matching pre-retrieval and deep learning significantly improves library retrieval accuracy by about 4%. Moreover, compared with the deep learning sorting algorithm that does not use the pre-retrieval process, it improves the accuracy of spectral library retrieval by about 0.1% and reduces the computational time of the algorithm by more than 2 h.

CONCLUSIONS

This method identifies compounds more efficiently and accurately than non-machine learning and deep learning algorithms without a pre-retrieval process.

摘要

原理

气相色谱-质谱联用(GC-MS)是一种广泛应用于材料科学、生物医学等领域的分析技术。实验中的目标化合物通过在大型质谱数据库中使用某些算法搜索其质谱来识别。本工作介绍了使用深度学习排序算法对低分辨电子电离 MS 中小分子的识别。由于不同的谱图通常非常相似,因此算法会产生错误的搜索结果,需要提高搜索准确性。由于库中数据量庞大,算法有时需要大量计算,非常耗时。

方法

针对这两个问题,本工作旨在开发一种基于质荷比(m/z)预检索方法的排序模型,结合深度学习,以提高搜索准确性并减少算法的计算时间。美国国家标准与技术研究院维护的主谱库被用作所有实验的参考库,复制品库被用作查询库,以评估该方法的性能。

结果

与非机器学习算法相比,m/z 匹配预检索与深度学习的结合可将库检索准确性提高约 4%。此外,与不使用预检索过程的深度学习排序算法相比,该方法将光谱库检索的准确性提高了约 0.1%,并将算法的计算时间减少了 2 个多小时。

结论

与无预检索过程的非机器学习和深度学习算法相比,该方法能更高效、更准确地识别化合物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验