Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Yancheng City Planning and Research Information Center, Yancheng, Jiangsu 224000, China.
J Hazard Mater. 2022 Oct 5;439:129671. doi: 10.1016/j.jhazmat.2022.129671. Epub 2022 Jul 25.
The extracellular electron transfer (EET) is regarded as one of the crucial factors that limit the application of the bioelectrochemical system (BES). In this study, two different solid-phase redox mediators (RMs), biochar (1.2 g/L, T-B) and humin (1.2 g/L, T-H) were used for boosting the microorganisms accessing the electrons required for 2,4,6-TCP dechlorination under weak electrical stimulation (-0.278 V vs. Standard hydrogen electrode). BES with dissolved RM anthraquinone-2,6-disulfonate (AQDS 0.5 mmol/L, T-A) was used as a comparison. The results showed that dechlorination of 2,4,6-TCP could be greatly accelerated by biochar (1.78 d) and humin (1.50 d) than AQDS (0.24 d) and no RM control (T-M, 0.27 d). Moreover, phenol became the predominant dechlorination product in T-H (78.5 %) and T-B (63.0 %) instead of 4-CP in T-M (67.1 %) and T-A (89.8 %). Pseudomonas, Sulfurospirillum, Desulfuromonas, Dehalobacter, Anaeromyxobacter, and Dechloromonas belonging to Proteobacteria or Firmicutes rather than Chloroflexi might be responsible for the dechlorination activity. Notably, different RMs tended to stimulate distinct electroactive bacteria. Pseudomonas was the most abundant microorganism in T-M (41.92 %) and T-A (17.24 %), while Rhodobacter was most prevalent in T-H (20.04 %) and Azonexus was predominant in T-B (48.48 %). This study is essential in advancing the understanding of EET in BES for microbial degradation of organohalide contaminants under weak electrical stimulation.
细胞外电子传递(EET)被认为是限制生物电化学系统(BES)应用的关键因素之一。在这项研究中,使用了两种不同的固相氧化还原介体(RM),生物炭(1.2 g/L,T-B)和腐殖质(1.2 g/L,T-H),以促进微生物在弱电刺激下获取用于 2,4,6-TCP 脱氯所需的电子(-0.278 V 与标准氢电极相比)。使用溶解 RM 蒽醌-2,6-二磺酸钠(AQDS 0.5 mmol/L,T-A)的 BES 作为比较。结果表明,与 AQDS(0.24 d)和无 RM 对照(T-M,0.27 d)相比,生物炭(1.78 d)和腐殖质(1.50 d)可以大大加速 2,4,6-TCP 的脱氯。此外,在 T-H(78.5%)和 T-B(63.0%)中,苯酚成为主要的脱氯产物,而在 T-M(67.1%)和 T-A(89.8%)中则是 4-CP。属于 Proteobacteria 或 Firmicutes 而不是 Chloroflexi 的假单胞菌、硫螺旋菌、脱硫单胞菌、脱卤杆菌、嗜盐菌和脱氯单胞菌可能负责脱氯活性。值得注意的是,不同的 RM 倾向于刺激不同的电活性细菌。假单胞菌是 T-M(41.92%)和 T-A(17.24%)中最丰富的微生物,而红杆菌在 T-H(20.04%)中最为普遍,而 Azonexus 在 T-B(48.48%)中占优势。这项研究对于在弱电刺激下理解 BES 中的 EET 以促进有机卤化物污染物的微生物降解具有重要意义。