Suppr超能文献

使用深度学习算法和迁移学习进行新冠肺炎肺炎水平检测。

COVID-19 pneumonia level detection using deep learning algorithm and transfer learning.

作者信息

Ali Abbas M, Ghafoor Kayhan, Mulahuwaish Aos, Maghdid Halgurd

机构信息

Department of Software Engineering, Salahaddin University, Erbil, Iraq.

Department of Computer Science, Knowledge University, University Park, Kirkuk Road, Erbil, Iraq.

出版信息

Evol Intell. 2022 Sep 10:1-12. doi: 10.1007/s12065-022-00777-0.

Abstract

The first COVID-19 confirmed case was reported in Wuhan, China, and spread across the globe with an unprecedented impact on humanity. Since this pandemic requires pervasive diagnosis, developing smart, fast, and efficient detection techniques is significant. To this end, we have developed an Artificial Intelligence engine to classify the lung inflammation level (mild, progressive, severe stage) of the COVID-19 confirmed patient. In particular, the developed model consists of two phases; in the first phase, we calculate the volume and density of lesions and opacities of the CT scan images of the confirmed COVID-19 patient using Morphological approaches. The second phase classifies the pneumonia level of the confirmed COVID-19 patient. We use a modified Convolution Neural Network (CNN) and k-Nearest Neighbor; we also compared the results of both models to the other classification algorithms to precisely classify lung inflammation. The experiments show that the CNN model can provide testing accuracy up to 95.65% compared with exiting classification techniques. The proposed system in this work can be applied efficiently to CT scan and X-ray image datasets. Also, in this work, the Transfer Learning technique has been used to train the pre-trained modified CNN model on a smaller dataset than the original dataset; the modified CNN achieved 92.80% of testing accuracy for detecting pneumonia on chest X-ray images for the relatively extensive dataset.

摘要

首例新冠肺炎确诊病例在中国武汉被报告,并在全球传播,对人类产生了前所未有的影响。由于这场疫情需要广泛的诊断,因此开发智能、快速且高效的检测技术具有重要意义。为此,我们开发了一个人工智能引擎来对新冠肺炎确诊患者的肺部炎症水平(轻度、进展期、重度阶段)进行分类。具体而言,所开发的模型包括两个阶段;在第一阶段,我们使用形态学方法计算确诊新冠肺炎患者CT扫描图像中病变和不透明度的体积和密度。第二阶段对确诊新冠肺炎患者的肺炎水平进行分类。我们使用了改进的卷积神经网络(CNN)和k近邻算法;我们还将这两种模型的结果与其他分类算法进行比较,以精确分类肺部炎症。实验表明,与现有分类技术相比,CNN模型的测试准确率可达95.65%。这项工作中提出的系统可以有效地应用于CT扫描和X射线图像数据集。此外,在这项工作中,迁移学习技术已被用于在比原始数据集更小的数据集上训练预训练的改进CNN模型;对于相对广泛的数据集,改进的CNN在检测胸部X射线图像上的肺炎时达到了92.80%的测试准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98b/9463680/bdb0dca3ec24/12065_2022_777_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验