Suppr超能文献

通过分析社交媒体来衡量公众对争议及其驱动因素的态度:以移民问题为例的研究

Analyzing social media for measuring public attitudes toward controversies and their driving factors: a case study of migration.

作者信息

Chen Yiyi, Sack Harald, Alam Mehwish

机构信息

FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, Karlsruhe, Germany.

Institute for Applied Informatics and Formal Description Systems (AIFB), Karlsruhe Institute of Technology, Karlsruhe, Germany.

出版信息

Soc Netw Anal Min. 2022;12(1):135. doi: 10.1007/s13278-022-00915-7. Epub 2022 Sep 10.

Abstract

Among other ways of expressing opinions on media such as blogs, and forums, social media (such as Twitter) has become one of the most widely used channels by populations for expressing their opinions. With an increasing interest in the topic of migration in Europe, it is important to process and analyze these opinions. To this end, this study aims at measuring the public attitudes toward migration in terms of sentiments and hate speech from a large number of tweets crawled on the decisive topic of migration. This study introduces a knowledge base (KB) of anonymized migration-related annotated tweets termed as MigrationsKB (MGKB). The tweets from 2013 to July 2021 in the European countries that are hosts of immigrants are collected, pre-processed, and filtered using advanced topic modeling techniques. BERT-based entity linking and sentiment analysis, complemented by attention-based hate speech detection, are performed to annotate the curated tweets. Moreover, external databases are used to identify the potential social and economic factors causing negative public attitudes toward migration. The analysis aligns with the hypothesis that the countries with more migrants have fewer negative and hateful tweets. To further promote research in the interdisciplinary fields of social sciences and computer science, the outcomes are integrated into MGKB, which significantly extends the existing ontology to consider the public attitudes toward migrations and economic indicators. This study further discusses the use-cases and exploitation of MGKB. Finally, MGKB is made publicly available, fully supporting the FAIR principles.

摘要

在博客和论坛等媒体表达意见的其他方式中,社交媒体(如推特)已成为民众表达意见使用最广泛的渠道之一。随着欧洲对移民话题的兴趣日益浓厚,处理和分析这些意见变得很重要。为此,本研究旨在从大量关于移民这一关键话题抓取的推文来衡量公众对移民的态度,包括情感倾向和仇恨言论。本研究引入了一个匿名的与移民相关的带注释推文知识库,称为移民知识库(MGKB)。收集2013年至2021年7月期间欧洲移民接收国的推文,使用先进的主题建模技术进行预处理和筛选。采用基于BERT的实体链接和情感分析,并辅以基于注意力的仇恨言论检测,对精选的推文进行注释。此外,利用外部数据库来识别导致公众对移民产生负面态度的潜在社会和经济因素。分析结果与以下假设一致:移民较多的国家负面和仇恨推文较少。为了进一步推动社会科学和计算机科学跨学科领域的研究,研究结果被整合到MGKB中,这显著扩展了现有的本体论,以考虑公众对移民的态度和经济指标。本研究进一步讨论了MGKB的用例和利用方式。最后,MGKB已公开发布,完全支持公平原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ad3/9463678/8bfca71e0158/13278_2022_915_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验