Barbier Jean, Macris Nicolas
International Center for Theoretical Physics (ICTP), I-34151 Trieste, Italy.
Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Phys Rev E. 2022 Aug;106(2-1):024136. doi: 10.1103/PhysRevE.106.024136.
We consider increasingly complex models of matrix denoising and dictionary learning in the Bayes-optimal setting, in the challenging regime where the matrices to infer have a rank growing linearly with the system size. This is in contrast with most existing literature concerned with the low-rank (i.e., constant-rank) regime. We first consider a class of rotationally invariant matrix denoising problems whose mutual information and minimum mean-square error are computable using techniques from random matrix theory. Next, we analyze the more challenging models of dictionary learning. To do so we introduce a combination of the replica method from statistical mechanics together with random matrix theory, coined spectral replica method. This allows us to derive variational formulas for the mutual information between hidden representations and the noisy data of the dictionary learning problem, as well as for the overlaps quantifying the optimal reconstruction error. The proposed method reduces the number of degrees of freedom from Θ(N^{2}) matrix entries to Θ(N) eigenvalues (or singular values), and yields Coulomb gas representations of the mutual information which are reminiscent of matrix models in physics. The main ingredients are a combination of large deviation results for random matrices together with a replica symmetric decoupling ansatz at the level of the probability distributions of eigenvalues (or singular values) of certain overlap matrices and the use of Harish-Chandra-Itzykson-Zuber spherical integrals.
我们考虑在贝叶斯最优设置下越来越复杂的矩阵去噪和字典学习模型,这种设置具有挑战性,因为要推断的矩阵的秩随系统大小线性增长。这与大多数关注低秩(即恒定秩)情况的现有文献形成对比。我们首先考虑一类旋转不变的矩阵去噪问题,其互信息和最小均方误差可以使用随机矩阵理论中的技术来计算。接下来,我们分析更具挑战性的字典学习模型。为此,我们引入了统计力学中的副本方法与随机矩阵理论的结合,即谱副本方法。这使我们能够推导出隐藏表示与字典学习问题的噪声数据之间互信息的变分公式,以及用于量化最优重构误差的重叠量的变分公式。所提出的方法将自由度的数量从 Θ(N²) 个矩阵元素减少到 Θ(N) 个特征值(或奇异值),并产生互信息的库仑气体表示,这让人联想到物理学中的矩阵模型。主要成分包括随机矩阵的大偏差结果与在某些重叠矩阵的特征值(或奇异值)概率分布层面的副本对称解耦假设的结合,以及哈里什 - 钱德拉 - 伊茨基松 - 祖伯球面积分的使用。