Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
Nat Commun. 2022 Sep 16;13(1):5434. doi: 10.1038/s41467-022-33111-4.
Despite the great promise of genetic code expansion technology to modulate structures and functions of proteins, external addition of ncAAs is required in most cases and it often limits the utility of genetic code expansion technology, especially to noncanonical amino acids (ncAAs) with poor membrane internalization. Here, we report the creation of autonomous cells, both prokaryotic and eukaryotic, with the ability to biosynthesize and genetically encode sulfotyrosine (sTyr), an important protein post-translational modification with low membrane permeability. These engineered cells can produce site-specifically sulfated proteins at a higher yield than cells fed exogenously with the highest level of sTyr reported in the literature. We use these autonomous cells to prepare highly potent thrombin inhibitors with site-specific sulfation. By enhancing ncAA incorporation efficiency, this added ability of cells to biosynthesize ncAAs and genetically incorporate them into proteins greatly extends the utility of genetic code expansion methods.
尽管遗传密码扩展技术在调节蛋白质的结构和功能方面具有巨大的潜力,但在大多数情况下都需要外部添加非天然氨基酸,这通常限制了遗传密码扩展技术的实用性,尤其是对于膜内化能力较差的非 canonical 氨基酸 (ncAAs)。在这里,我们报告了具有生物合成和遗传编码磺酪氨酸 (sTyr) 能力的自主原核和真核细胞的创建,sTyr 是一种具有低膜通透性的重要蛋白质翻译后修饰。与文献中报道的最高水平的 sTyr 相比,这些工程细胞可以以更高的产率生产定点磺化的蛋白质。我们使用这些自主细胞来制备具有定点磺化的高活性凝血酶抑制剂。通过提高 ncAA 掺入效率,细胞生物合成 ncAA 并将其遗传掺入蛋白质的这种能力大大扩展了遗传密码扩展方法的实用性。