Suppr超能文献

利用机器学习技术,根据自动量化光学相干断层扫描生物标志物预测地图样萎缩患者的视力功能。

Prediction of visual function from automatically quantified optical coherence tomography biomarkers in patients with geographic atrophy using machine learning.

机构信息

NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub, 162 City Rd, London, EC1V 2PD, UK.

Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.

出版信息

Sci Rep. 2022 Sep 16;12(1):15565. doi: 10.1038/s41598-022-19413-z.

Abstract

Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration (AMD), one of the leading causes of blindness globally. Objective, rapid, reliable, and scalable quantification of GA from optical coherence tomography (OCT) retinal scans is necessary for disease monitoring, prognostic research, and clinical endpoints for therapy development. Such automatically quantified biomarkers on OCT are likely to further elucidate structure-function correlation in GA and thus the pathophysiological mechanisms of disease development and progression. In this work, we aimed to predict visual function with machine-learning applied to automatically acquired quantitative imaging biomarkers in GA. A post-hoc analysis of data from a clinical trial and routine clinical care was conducted. A deep-learning automated segmentation model was applied on OCT scans from 476 eyes (325 patients) with GA. A separate machine learning prediction model (Random Forest) used the resultant quantitative OCT (qOCT) biomarkers to predict cross-sectional visual acuity under standard (VA) and low luminance (LLVA). The primary outcome was regression coefficient (r) and mean absolute error (MAE) for cross-sectional VA and LLVA in Early Treatment Diabetic Retinopathy Study (ETDRS) letters. OCT parameters were predictive of VA (r 0.40 MAE 11.7 ETDRS letters) and LLVA (r 0.25 MAE 12.1). Normalised random forest feature importance, as a measure of the predictive value of the three constituent features of GA; retinal pigment epithelium (RPE)-loss, photoreceptor degeneration (PDR), hypertransmission and their locations, was reported both on voxel-level heatmaps and ETDRS-grid subfields. The foveal region (46.5%) and RPE-loss (31.1%) had greatest predictive importance for VA. For LLVA, however, non-foveal regions (74.5%) and PDR (38.9%) were most important. In conclusion, automated qOCT biomarkers demonstrate predictive significance for VA and LLVA in GA. LLVA is itself predictive of GA progression, implying that the predictive qOCT biomarkers provided by our model are also prognostic.

摘要

地图状萎缩(GA)是一种与年龄相关的黄斑变性(AMD)相关的致盲性疾病,是全球致盲的主要原因之一。从光学相干断层扫描(OCT)视网膜扫描中客观、快速、可靠和可扩展地定量 GA 对于疾病监测、预后研究和治疗开发的临床终点非常必要。OCT 上的这种自动量化生物标志物可能进一步阐明 GA 中的结构-功能相关性,从而阐明疾病发展和进展的病理生理机制。在这项工作中,我们旨在通过机器学习应用于 GA 中的自动获取的定量成像生物标志物来预测视力功能。对一项临床试验和常规临床护理的数据进行了事后分析。在 476 只眼睛(325 名患者)的 GA 中应用了深度学习自动分割模型。另一个机器学习预测模型(随机森林)使用所得的定量 OCT(qOCT)生物标志物来预测标准(VA)和低亮度(LLVA)下的横截面视力。主要结局是横截面 VA 和 LLVA 的回归系数(r)和平均绝对误差(MAE),以早期治疗糖尿病性视网膜病变研究(ETDRS)字母表示。OCT 参数可预测 VA(r=0.40,MAE=11.7 ETDRS 字母)和 LLVA(r=0.25,MAE=12.1)。正常化随机森林特征重要性作为 GA 的三个组成特征(视网膜色素上皮(RPE)丢失、光感受器变性(PDR)、高透过率及其位置)的预测价值的度量,报告了体素级热图和 ETDRS 网格子区域。中央凹区域(46.5%)和 RPE 丢失(31.1%)对 VA 具有最大的预测重要性。然而,对于 LLVA,非中央凹区域(74.5%)和 PDR(38.9%)最重要。总之,自动 qOCT 生物标志物证明了 GA 中 VA 和 LLVA 的预测意义。LLVA 本身可预测 GA 进展,这意味着我们的模型提供的预测性 qOCT 生物标志物也是预后性的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/384f/9481631/df4759ece2c0/41598_2022_19413_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验