Suppr超能文献

OpenBHB:一个用于年龄预测和去偏的大规模多站点脑 MRI 数据集。

OpenBHB: a Large-Scale Multi-Site Brain MRI Data-set for Age Prediction and Debiasing.

机构信息

NeuroSpin, CEA Saclay, Université Paris-Saclay, France.

NeuroSpin, CEA Saclay, Université Paris-Saclay, France.

出版信息

Neuroimage. 2022 Nov;263:119637. doi: 10.1016/j.neuroimage.2022.119637. Epub 2022 Sep 17.

Abstract

Prediction of chronological age from neuroimaging in the healthy population is an important issue because the deviations from normal brain age may highlight abnormal trajectories towards brain disorders. As a first step, ML models have emerged to predict chronological age from brain MRI, as a proxy measure of biological age. However, there is currently no consensus w.r.t which Machine Learning (ML) model is best suited for this task, largely because of a lack of public benchmark. Furthermore, new large emerging population neuroimaging datasets are often biased by the acquisition center images are coming from. This bias heavily deteriorates models generalization capacities, especially for Deep Learning (DL) algorithms that are known to overfit rapidly on the simplest features (known as simplicity bias). Here we propose a new public benchmarking resource, namely Open Big Healthy Brains (OpenBHB), along with a challenge for both brain age prediction and site-effect removal through a representation learning framework. OpenBHB is large-scale, gathering >5K 3D T1 brain MRI from Healthy Controls (HC) and highly multi-sites, aggregating >60 centers worldwide and 10 studies. OpenBHB is expected to grow both in terms of available modalities and number of subjects. All OpenBHB datasets are uniformly preprocessed, including quality check, with container technologies that consist in: 3D Voxel-Based Morphometry maps (VBM from CAT12), quasi-raw (simple linear alignment of images), and Surface-Based Morphometry indices (SBM, from FreeSurfer). The OpenBHB challenge is permanent and we provide all tools, materials and tutorials for participants to easily submit and benchmark their model against each other on a public leaderboard.

摘要

在健康人群中,从神经影像学预测实际年龄是一个重要问题,因为与正常大脑年龄的偏差可能突出了向大脑疾病异常轨迹。作为第一步,机器学习 (ML) 模型已经出现,以从脑 MRI 预测实际年龄,作为生物年龄的替代测量。然而,目前对于哪种机器学习 (ML) 模型最适合这项任务还没有共识,主要是因为缺乏公共基准。此外,新的大型新兴人群神经影像学数据集通常受到采集中心图像来源的影响。这种偏差严重降低了模型的泛化能力,特别是对于深度学习 (DL) 算法,这些算法已知会迅速适应最简单的特征(称为简单性偏差)。在这里,我们提出了一个新的公共基准资源,即 Open Big Healthy Brains (OpenBHB),以及一个通过表示学习框架进行脑龄预测和站点效应去除的挑战。OpenBHB 规模庞大,汇集了 >5K 名健康对照(HC)的 3D T1 脑 MRI,并且高度多站点,聚集了来自全球 >60 个中心和 10 项研究。OpenBHB 在可用模态和受试者数量方面都有望增加。所有 OpenBHB 数据集都经过统一预处理,包括质量检查,使用容器技术,包括:3D 体素基形态计量学图(来自 CAT12 的 VBM)、准原始(图像的简单线性对齐)和表面基形态计量学指数(来自 FreeSurfer 的 SBM)。OpenBHB 挑战赛是永久性的,我们为参与者提供了所有工具、材料和教程,以便他们能够轻松地提交并在公共排行榜上相互比较他们的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验