Li Zhong-Yi, Zhang De-Qing, Lin Shao-Zhen, Góźdź Wojciech T, Li Bo
Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
Aix Marseille Université, CNRS, Centre de Physique Théorique, Turing Center for Living Systems, 13009 Marseille, France.
Soft Matter. 2022 Oct 5;18(38):7348-7359. doi: 10.1039/d2sm00819j.
Skyrmions are topologically protected vortex-like excitations that hold promise for applications such as information processing and electron manipulation. Here we combine theoretical analysis and numerical simulations to show that skyrmions can spontaneously emerge in chiral active matter without external confinements or regulation. Strikingly, these activity-driven skyrmions can either self-organize into a periodic, stable square lattice consisting of half Néel skyrmions and antiskyrmions, where the in-plane flows display an antiferromagnetic vortex array, or undergo phase separation between skyrmions with different topological numbers. We identify that the emerging skyrmion dynamics stems from the competition between the chiral and polar coherence length scales dictated by the interplay of intrinsic chirality, polarity, and elasticity in the system. Our results reveal unanticipated topological excitations, self-organization, and phase separation in non-equilibrium systems and also suggest a potential way towards engineering complicated bespoke skyrmionic structures through manipulating active matter.
斯格明子是拓扑保护的类涡旋激发,在信息处理和电子操控等应用方面具有潜力。在此,我们结合理论分析和数值模拟表明,斯格明子能够在无外部限制或调控的手性活性物质中自发出现。引人注目的是,这些由活性驱动的斯格明子既可以自组织成由半尼尔型斯格明子和反斯格明子组成的周期性稳定方形晶格,其中面内流呈现反铁磁涡旋阵列,也可以在具有不同拓扑数的斯格明子之间发生相分离。我们确定,新兴的斯格明子动力学源于系统中固有手性、极性和弹性相互作用所决定的手性和极性相干长度尺度之间的竞争。我们的结果揭示了非平衡系统中意想不到的拓扑激发、自组织和相分离,也为通过操纵活性物质来设计复杂定制的斯格明子结构提供了一条潜在途径。