Beignon Florian, Gueguen Naig, Tricoire-Leignel Hélène, Mattei César, Lenaers Guy
Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France.
Service de Biochimie et Biologie Moléculaire, CHU d'Angers, Angers, France.
Cell Mol Life Sci. 2022 Sep 20;79(10):525. doi: 10.1007/s00018-022-04523-8.
Understanding temperature production and regulation in endotherm organisms becomes a crucial challenge facing the increased frequency and intensity of heat strokes related to global warming. Mitochondria, located at the crossroad of metabolism, respiration, Ca homeostasis, and apoptosis, were recently proposed to further act as cellular radiators, with an estimated inner temperature reaching 50 °C in common cell lines. This inner thermogenesis might be further exacerbated in organs devoted to produce consistent efforts as muscles, or heat as brown adipose tissue, in response to acute solicitations. Consequently, pathways promoting respiratory chain uncoupling and mitochondrial activity, such as Ca fluxes, uncoupling proteins, futile cycling, and substrate supplies, provide the main processes controlling heat production and cell temperature. The mitochondrial thermogenesis might be further amplified by cytoplasmic mechanisms promoting the over-consumption of ATP pools. Considering these new thermic paradigms, we discuss here all conventional wisdoms linking mitochondrial functions to cellular thermogenesis in different physiological conditions.
随着与全球变暖相关的中暑频率和强度增加,了解恒温动物体内的温度产生和调节成为一项关键挑战。线粒体位于新陈代谢、呼吸作用、钙稳态和细胞凋亡的交叉点,最近有人提出它还可作为细胞散热器,在常见细胞系中,其内部温度估计可达50°C。在诸如肌肉等需要持续发力的器官,或棕色脂肪组织产热的过程中,这种内部产热可能会因急性刺激而进一步加剧。因此,促进呼吸链解偶联和线粒体活性的途径,如钙通量、解偶联蛋白、无效循环和底物供应,是控制产热和细胞温度的主要过程。促进ATP池过度消耗的细胞质机制可能会进一步放大线粒体产热。考虑到这些新的热学范式,我们在此讨论将线粒体功能与不同生理条件下的细胞产热联系起来的所有传统观点。