Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
Lyssn.io, Inc, Seattle, USA.
BMC Health Serv Res. 2022 Sep 20;22(1):1177. doi: 10.1186/s12913-022-08519-9.
Each year, millions of Americans receive evidence-based psychotherapies (EBPs) like cognitive behavioral therapy (CBT) for the treatment of mental and behavioral health problems. Yet, at present, there is no scalable method for evaluating the quality of psychotherapy services, leaving EBP quality and effectiveness largely unmeasured and unknown. Project AFFECT will develop and evaluate an AI-based software system to automatically estimate CBT fidelity from a recording of a CBT session. Project AFFECT is an NIMH-funded research partnership between the Penn Collaborative for CBT and Implementation Science and Lyssn.io, Inc. ("Lyssn") a start-up developing AI-based technologies that are objective, scalable, and cost efficient, to support training, supervision, and quality assurance of EBPs. Lyssn provides HIPAA-compliant, cloud-based software for secure recording, sharing, and reviewing of therapy sessions, which includes AI-generated metrics for CBT. The proposed tool will build from and be integrated into this core platform.
Phase I will work from an existing software prototype to develop a LyssnCBT user interface geared to the needs of community mental health (CMH) agencies. Core activities include a user-centered design focus group and interviews with community mental health therapists, supervisors, and administrators to inform the design and development of LyssnCBT. LyssnCBT will be evaluated for usability and implementation readiness in a final stage of Phase I. Phase II will conduct a stepped-wedge, hybrid implementation-effectiveness randomized trial (N = 1,875 clients) to evaluate the effectiveness of LyssnCBT to improve therapist CBT skills and client outcomes and reduce client drop-out. Analyses will also examine the hypothesized mechanism of action underlying LyssnCBT.
Successful execution will provide automated, scalable CBT fidelity feedback for the first time ever, supporting high-quality training, supervision, and quality assurance, and providing a core technology foundation that could support the quality delivery of a range of EBPs in the future.
ClinicalTrials.gov; NCT05340738 ; approved 4/21/2022.
每年,数以百万计的美国人接受循证心理疗法(如认知行为疗法(CBT))治疗精神和行为健康问题。然而,目前,还没有一种可扩展的方法来评估心理治疗服务的质量,使得 EBP 的质量和效果在很大程度上无法衡量和未知。AFFECT 项目将开发和评估一种基于人工智能的软件系统,从 CBT 会话的录音中自动估计 CBT 的保真度。AFFECT 项目是一个由 NIMH 资助的研究合作项目,由宾夕法尼亚认知行为治疗和实施科学合作组织(“Lyssn”)与开发基于人工智能的技术的初创公司合作开展,这些技术是客观的、可扩展的和具有成本效益的,以支持 EBP 的培训、监督和质量保证。Lyssn 提供符合 HIPAA 标准的云软件,用于安全记录、共享和审查治疗会话,其中包括 CBT 的人工智能生成指标。拟议的工具将在该核心平台的基础上进行构建和整合。
第一阶段将从现有的软件原型入手,开发一个针对社区心理健康机构需求的 LyssnCBT 用户界面。核心活动包括以用户为中心的设计重点小组和对社区心理健康治疗师、主管和管理人员的访谈,以告知 LyssnCBT 的设计和开发。LyssnCBT 将在第一阶段的最后阶段进行可用性和实施准备情况评估。第二阶段将进行一项逐步楔形、混合实施有效性随机试验(N=1875 名患者),以评估 LyssnCBT 提高治疗师 CBT 技能和患者结果并降低患者流失率的效果。分析还将检验 LyssnCBT 背后的假设作用机制。
成功实施将首次提供自动化、可扩展的 CBT 保真反馈,支持高质量的培训、监督和质量保证,并提供一个核心技术基础,未来可能支持一系列 EBP 的质量交付。
ClinicalTrials.gov;NCT05340738;2022 年 4 月 21 日批准。