Department of Statistics and Business, Faculty of Law and Business, University of Cordoba, Avda. Puerta Nueva, s/n., E-14071 Cordoba, Spain.
Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Marie Curie Building, E-14014 Cordoba, Spain.
J Chem Inf Model. 2022 Oct 10;62(19):4620-4628. doi: 10.1021/acs.jcim.2c00964. Epub 2022 Sep 21.
The high price of marketing of extra virgin olive oil (EVOO) requires the introduction of cost-effective and sustainable procedures that facilitate its authentication, avoiding fraud in the sector. Contrary to classical techniques (such as chromatography), near-infrared (NIR) spectroscopy does not need derivatization of the sample with proper integration of separated peaks and is more reliable, rapid, and cost-effective. In this work, principal component analysis (PCA) and then redundancy analysis (RDA)─which can be seen as a constrained version of PCA─are used to summarize the high-dimensional NIR spectral information. Then PCA and RDA factors are contemplated as explanatory variables in models to authenticate oils from qualitative or quantitative analysis, in particular, in the prediction of the percentage of EVOO in blended oils or in the classification of EVOO or other vegetable oils (sunflower, hazelnut, corn, or linseed oil) by the use of some machine learning algorithms. As a conclusion, the results highlight the potential of RDA factors in prediction and classification because they appreciably improve the results obtained from PCA factors in calibration and validation.
特级初榨橄榄油(EVOO)的高营销价格需要引入具有成本效益和可持续性的程序,以促进其认证,避免该行业的欺诈行为。与经典技术(如色谱法)相反,近红外(NIR)光谱不需要对样品进行衍生化处理,通过适当的分离峰集成,该技术更可靠、快速且具有成本效益。在这项工作中,主成分分析(PCA),然后是冗余分析(RDA)─可以将其视为 PCA 的一种约束版本─用于总结高维 NIR 光谱信息。然后,PCA 和 RDA 因子被视为模型中的解释变量,用于从定性或定量分析中对油进行认证,特别是在预测混合油中的特级初榨橄榄油百分比或通过使用某些机器学习算法对特级初榨橄榄油或其他植物油(葵花籽油、榛子油、玉米油或亚麻籽油)进行分类。总之,结果突出了 RDA 因子在预测和分类方面的潜力,因为它们可显著提高从 PCA 因子在校准和验证中获得的结果。