Suppr超能文献

Involvement of the Noncanonical Polyadenylation Polymerase Cid14 in Fungal Azole Resistance in the Pathogen Cryptococcus neoformans.

作者信息

Li Chenxi, Zhen Sihui, Ma Xiaoyu, Ma Lan, Wang Zhen, Zhang Ping, Zhu Xudong

机构信息

Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University (CLS-BNU), Beijing 100875, China.

Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.

出版信息

Pathog Dis. 2022 Oct 6;80(1). doi: 10.1093/femspd/ftac036.

Abstract

The yeast noncanonical polyadenylation polymerase Cid14 was originally identified from fission yeast and plays a critical role in the TRAMP complex. This protein is a cytoplasmic cofactor and regulator of RNA-degrading exosomes. Cid14 is highly conserved from yeast to animals and has been demonstrated to play key roles in the regulation of RNA surveillance, nutrition metabolism, and growth in model organisms, but not yet in Cryptococcus neoformans (C. neoformans). Here, we report the identification of a gene encoding an equivalent Cid14 protein, named CID14, in the fungal pathogen C. neoformans. To obtain insights into the function of Cid14, we created a mutant strain, cid14Δ, with the CRISPR-Cas9 editing tool. Disruption of CID14 impaired cell membrane stability. Further investigations revealed the defects of the cid14Δ mutant in resistance to low carbohydrate levels. Meanwhile, significantly, the ability to grow under flucytosine stress was decreased in the cid14Δ mutant. More importantly, our results showed that the cid14Δ mutant does not affect yeast virulence but exhibits multidrug resistance to azole. Our work is the first to suggest that Cid14 plays critical roles in azole resistance by affecting Afr1, which is chiefly responsible for azole excretion in the ABC (ATP-binding cassette) transporter.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验