Suppr超能文献

并非所有实例都具有同等贡献:用于少样本视觉识别的实例自适应类表示学习

Not All Instances Contribute Equally: Instance-Adaptive Class Representation Learning for Few-Shot Visual Recognition.

作者信息

Han Mengya, Zhan Yibing, Luo Yong, Du Bo, Hu Han, Wen Yonggang, Tao Dacheng

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):5447-5460. doi: 10.1109/TNNLS.2022.3204684. Epub 2024 Apr 4.

Abstract

Few-shot visual recognition refers to recognize novel visual concepts from a few labeled instances. Many few-shot visual recognition methods adopt the metric-based meta-learning paradigm by comparing the query representation with class representations to predict the category of query instance. However, the current metric-based methods generally treat all instances equally and consequently often obtain biased class representation, considering not all instances are equally significant when summarizing the instance-level representations for the class-level representation. For example, some instances may contain unrepresentative information, such as too much background and information of unrelated concepts, which skew the results. To address the above issues, we propose a novel metric-based meta-learning framework termed instance-adaptive class representation learning network (ICRL-Net) for few-shot visual recognition. Specifically, we develop an adaptive instance revaluing network (AIRN) with the capability to address the biased representation issue when generating the class representation, by learning and assigning adaptive weights for different instances according to their relative significance in the support set of corresponding class. In addition, we design an improved bilinear instance representation and incorporate two novel structural losses, i.e., intraclass instance clustering loss and interclass representation distinguishing loss, to further regulate the instance revaluation process and refine the class representation. We conduct extensive experiments on four commonly adopted few-shot benchmarks: miniImageNet, tieredImageNet, CIFAR-FS, and FC100 datasets. The experimental results compared with the state-of-the-art approaches demonstrate the superiority of our ICRL-Net.

摘要

少样本视觉识别是指从少量带标签的实例中识别新的视觉概念。许多少样本视觉识别方法采用基于度量的元学习范式,通过将查询表示与类别表示进行比较来预测查询实例的类别。然而,当前基于度量的方法通常平等对待所有实例,因此在为类别级表示总结实例级表示时,由于并非所有实例都具有同等重要性,常常会获得有偏差的类别表示。例如,一些实例可能包含不具代表性的信息,如过多的背景和无关概念的信息,这会使结果产生偏差。为了解决上述问题,我们提出了一种新颖的基于度量的元学习框架,称为用于少样本视觉识别的实例自适应类别表示学习网络(ICRL-Net)。具体而言,我们开发了一种自适应实例重评估网络(AIRN),它能够在生成类别表示时解决有偏差的表示问题,通过根据不同实例在相应类别的支持集中的相对重要性来学习和分配自适应权重。此外,我们设计了一种改进的双线性实例表示,并纳入了两种新颖的结构损失,即类内实例聚类损失和类间表示区分损失,以进一步规范实例重评估过程并优化类别表示。我们在四个常用的少样本基准数据集上进行了广泛的实验:miniImageNet、tieredImageNet、CIFAR-FS和FC100数据集。与当前最先进方法的实验结果对比表明了我们的ICRL-Net的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验