Suppr超能文献

对涉及一级亲属的混合物中的单细胞重复进行概率基因分型可防止非供体亲属的错误纳入。

Probabilistic Genotyping of Single Cell Replicates from Mixtures Involving First-Degree Relatives Prevents the False Inclusions of Non-Donor Relatives.

机构信息

Graduate Program in Chemistry, Department of Chemistry, University of Central Florida, P.O. Box 162366, Orlando, FL 32816-2366, USA.

National Center for Forensic Science, P.O. Box 162367, Orlando, FL 32816-2367, USA.

出版信息

Genes (Basel). 2022 Sep 15;13(9):1658. doi: 10.3390/genes13091658.

Abstract

Analysis of complex DNA mixtures comprised of related individuals requires a great degree of care due to the increased risk of falsely including non-donor first-degree relatives. Although alternative likelihood ratio (LR) propositions that may aid in the analysis of these difficult cases can be employed, the prior information required for their use is not always known, nor do these alternative propositions always prevent false inclusions. For example, with a father/mother/child mixture, conditioning the mixture on the presence of one of the parents is recommended. However, the definitive presence of the parent(s) is not always known and an assumption of their presence in the mixture may not be objectively justifiable. Additionally, the high level of allele sharing seen with familial mixtures leads to an increased risk of underestimating the number of contributors (NOC) to a mixture. Therefore, fully resolving and identifying each of the individuals present in familial mixtures and excluding related non-donors is an important goal of the mixture deconvolution process and can be of great investigative value. Here, firstly, we further investigated and confirmed the problems encountered with standard bulk analysis of familial mixtures and demonstrated the ability of single cell analysis to fully distinguish first-degree relatives (FDR). Then, separation of each of the individual donors via single cell analysis was carried out by a combination of direct single cell subsampling (DSCS), enhanced DNA typing, and probabilistic genotyping, and applied to three complex familial 4-person mixtures resulting in a probative gain of LR for all donors and an accurate determination of the NOC. Significantly, non-donor first-degree relatives that were falsely included (LRs > 102−108) by a standard bulk sampling and analysis approach were no longer falsely included using DSCS.

摘要

分析由相关个体组成的复杂 DNA 混合物需要非常谨慎,因为这样会增加错误地包括非供体一级亲属的风险。尽管可以采用其他可能有助于分析这些困难案例的似然比 (LR) 命题,但这些命题的使用所需的先验信息并不总是已知的,而且这些替代命题也并不总是能防止错误地包括在内。例如,对于父亲/母亲/孩子的混合物,可以根据父母一方的存在对混合物进行条件化处理。然而,父母一方的存在并不总是确定的,并且在混合物中假设其存在可能在客观上没有依据。此外,由于家族性混合物中存在高度的等位基因共享,导致低估混合物的供体数量 (NOC) 的风险增加。因此,完全解析和识别家族性混合物中存在的每个个体并排除相关的非供体是混合物去卷积过程的一个重要目标,并且具有重要的调查价值。在这里,我们首先进一步研究和证实了在家族性混合物的标准批量分析中遇到的问题,并展示了单细胞分析能够完全区分一级亲属 (FDR) 的能力。然后,通过直接单细胞抽样 (DSCS)、增强的 DNA 分型和概率基因分型的组合,对每个个体供体进行了单细胞分析的分离,并将其应用于三个复杂的家族性 4 人混合物中,从而为所有供体提供了 LR 的证明增益,并准确确定了 NOC。重要的是,使用标准的批量采样和分析方法错误地包括的非供体一级亲属(LR>102-108),通过 DSCS 不再错误地包括在内。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6933/9498535/f71f82ba0d6d/genes-13-01658-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验