Suppr超能文献

预测阻塞性冠状动脉疾病的机器学习算法:来自CorLipid试验的见解

Machine Learning Algorithm to Predict Obstructive Coronary Artery Disease: Insights from the CorLipid Trial.

作者信息

Panteris Eleftherios, Deda Olga, Papazoglou Andreas S, Karagiannidis Efstratios, Liapikos Theodoros, Begou Olga, Meikopoulos Thomas, Mouskeftara Thomai, Sofidis Georgios, Sianos Georgios, Theodoridis Georgios, Gika Helen

机构信息

Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.

Biomic_Auth, Bioanalysis and Omics Lab, Centre for Interdisciplinary Research of Aristotle University of Thessaloniki, 57001 Thermi, Greece.

出版信息

Metabolites. 2022 Aug 30;12(9):816. doi: 10.3390/metabo12090816.

Abstract

Developing risk assessment tools for CAD prediction remains challenging nowadays. We developed an ML predictive algorithm based on metabolic and clinical data for determining the severity of CAD, as assessed via the SYNTAX score. Analytical methods were developed to determine serum blood levels of specific ceramides, acyl-carnitines, fatty acids, and proteins such as galectin-3, adiponectin, and APOB/APOA1 ratio. Patients were grouped into: obstructive CAD (SS > 0) and non-obstructive CAD (SS = 0). A risk prediction algorithm (boosted ensemble algorithm XGBoost) was developed by combining clinical characteristics with established and novel biomarkers to identify patients at high risk for complex CAD. The study population comprised 958 patients (CorLipid trial (NCT04580173)), with no prior CAD, who underwent coronary angiography. Of them, 533 (55.6%) suffered ACS, 170 (17.7%) presented with NSTEMI, 222 (23.2%) with STEMI, and 141 (14.7%) with unstable angina. Of the total sample, 681 (71%) had obstructive CAD. The algorithm dataset was 73 biochemical parameters and metabolic biomarkers as well as anthropometric and medical history variables. The performance of the XGBoost algorithm had an AUC value of 0.725 (95% CI: 0.691−0.759). Thus, a ML model incorporating clinical features in addition to certain metabolic features can estimate the pre-test likelihood of obstructive CAD.

摘要

如今,开发用于预测冠心病(CAD)的风险评估工具仍然具有挑战性。我们基于代谢和临床数据开发了一种机器学习预测算法,用于确定CAD的严重程度,通过SYNTAX评分进行评估。开发了分析方法来测定特定神经酰胺、酰基肉碱、脂肪酸以及诸如半乳糖凝集素-3、脂联素和载脂蛋白B/载脂蛋白A1比值等蛋白质的血清水平。患者被分为:阻塞性CAD(SYNTAX评分>0)和非阻塞性CAD(SYNTAX评分=0)。通过将临床特征与已确立和新发现的生物标志物相结合,开发了一种风险预测算法(增强集成算法XGBoost),以识别复杂CAD的高危患者。研究人群包括958例(CorLipid试验(NCT04580173))既往无CAD且接受了冠状动脉造影的患者。其中,533例(55.6%)患有急性冠状动脉综合征(ACS),170例(17.7%)为非ST段抬高型心肌梗死(NSTEMI),222例(23.2%)为ST段抬高型心肌梗死(STEMI),141例(14.7%)为不稳定型心绞痛。在总样本中,681例(71%)患有阻塞性CAD。算法数据集包括73个生化参数、代谢生物标志物以及人体测量和病史变量。XGBoost算法的性能AUC值为0.725(95%置信区间:0.691 - 0.759)。因此,一个除了某些代谢特征还纳入临床特征的机器学习模型可以估计阻塞性CAD的检测前可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45b7/9504538/faed49e13c74/metabolites-12-00816-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验