Suppr超能文献

基于傅里叶变换红外光谱和改进的神经网络结构双网络的不同地理位置野生 的快速鉴定。

Rapid Identification of Wild in Different Geographical Locations Based on FT-IR and an Improved Neural Network Structure Double-Net.

机构信息

School of Medicine, Huaqiao University, Quanzhou 362021, China.

School of Biomedical Science, Huaqiao University, Quanzhou 362021, China.

出版信息

Molecules. 2022 Sep 14;27(18):5979. doi: 10.3390/molecules27185979.

Abstract

, a herb mainly distributed in Asia and Europe, has been used to treat the damp heat disease of the liver for over 2000 years in China. Previous studies have shown significant differences in the compositional contents of wild samples from different geographical origins. Therefore, the traceable geographic locations of the wild samples are essential to ensure practical medicinal value. Over the last few years, the developments in chemometrics have facilitated the analysis of the composition of medicinal herbs via spectroscopy. Notably, FT-IR spectroscopy is widely used because of its benefit of allowing rapid, nondestructive measurements. In this paper, we collected wild samples from seven different provinces (222 samples in total). Twenty-one different FT-IR spectral pre-processing methods that were used in our experiments. Meanwhile, we also designed a neural network, Double-Net, to predict the geographical locations of wild plants via FT-IR spectroscopy. The experiments showed that the accuracy of the neural network structure Double-Net we designed can reach 100%, and the F1_score can reach 1.0.

摘要

, 一种主要分布在亚洲和欧洲的草药,在中国已经被用于治疗湿热肝病超过 2000 年。先前的研究表明,来自不同地理起源的野生 样本在组成含量上有显著差异。因此,可追溯的野生 样本的地理来源对于确保其实用的药用价值至关重要。在过去的几年中,化学计量学的发展促进了通过光谱法分析草药的成分。值得注意的是,FT-IR 光谱因其允许快速、无损测量的优势而被广泛使用。在本文中,我们收集了来自七个不同省份(总共 222 个样本)的野生 样本。我们的实验中使用了二十一种不同的 FT-IR 光谱预处理方法。同时,我们还设计了一个神经网络,Double-Net,通过 FT-IR 光谱预测野生 植物的地理来源。实验表明,我们设计的神经网络结构 Double-Net 的准确率可以达到 100%,F1 得分为 1.0。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e20/9506529/87068123112d/molecules-27-05979-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验