Suppr超能文献

一种融合 EDPA 和运动补偿的空间-运动分割算法。

A Spatial-Motion-Segmentation Algorithm by Fusing EDPA and Motion Compensation.

机构信息

School of Electrical Engineering, Xi'an University of Technology, Xi'an 710048, China.

Department of Electrical and Computer Engineering, National University of Singapore, Singapore 119077, Singapore.

出版信息

Sensors (Basel). 2022 Sep 6;22(18):6732. doi: 10.3390/s22186732.

Abstract

Motion segmentation is one of the fundamental steps for detection, tracking, and recognition, and it can separate moving objects from the background. In this paper, we propose a spatial-motion-segmentation algorithm by fusing the events-dimensionality-preprocessing algorithm (EDPA) and the volume of warped events (VWE). The EDPA consists of depth estimation, linear interpolation, and coordinate normalization to obtain an extra dimension () of events. The VWE is conducted by accumulating the warped events (i.e., motion compensation), and the iterative-clustering algorithm is introduced to maximize the contrast (i.e., variance) in the VWE. We established our datasets by utilizing the event-camera simulator (ESIM), which can simulate high-frame-rate videos that are decomposed into frames to generate a large amount of reliable events data. Exterior and interior scenes were segmented in the first part of the experiments. We present the sparrow search algorithm-based gradient ascent (SSA-Gradient Ascent). The SSA-Gradient Ascent, gradient ascent, and particle swarm optimization (PSO) were evaluated in the second part. In Motion Flow 1, the SSA-Gradient Ascent was 0.402% higher than the basic variance value, and 52.941% faster than the basic convergence rate. In Motion Flow 2, the SSA-Gradient Ascent still performed better than the others. The experimental results validate the feasibility of the proposed algorithm.

摘要

运动分割是检测、跟踪和识别的基本步骤之一,它可以将运动物体从背景中分离出来。在本文中,我们提出了一种融合事件维度预处理算法(EDPA)和扭曲事件体积(VWE)的空间运动分割算法。EDPA 包括深度估计、线性插值和坐标归一化,以获得事件的额外维度()。VWE 通过累积扭曲事件(即运动补偿)来实现,引入迭代聚类算法来最大化 VWE 中的对比度(即方差)。我们利用事件摄像机模拟器(ESIM)建立了我们的数据集,该模拟器可以模拟高帧率视频,这些视频被分解成帧,以生成大量可靠的事件数据。在实验的第一部分,我们对外景和内景进行了分割。我们提出了基于麻雀搜索算法的梯度上升(SSA-Gradient Ascent)。在第二部分,我们对 SSA-Gradient Ascent、梯度上升和粒子群优化(PSO)进行了评估。在 Motion Flow 1 中,SSA-Gradient Ascent 比基本方差值高出 0.402%,比基本收敛速度快 52.941%。在 Motion Flow 2 中,SSA-Gradient Ascent 的表现仍然优于其他算法。实验结果验证了所提出算法的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4d6/9502573/8ad29860d6e3/sensors-22-06732-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验