Suppr超能文献

深度学习在糖尿病视网膜病变分析中的应用:综述、研究挑战及未来方向。

Deep Learning for Diabetic Retinopathy Analysis: A Review, Research Challenges, and Future Directions.

机构信息

Faculty of Information and Communication Technology (FICT), Universiti Tunku Abdul Rahman (UTAR), Kampar 31900, Malaysia.

Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore 54000, Pakistan.

出版信息

Sensors (Basel). 2022 Sep 8;22(18):6780. doi: 10.3390/s22186780.

Abstract

Deep learning (DL) enables the creation of computational models comprising multiple processing layers that learn data representations at multiple levels of abstraction. In the recent past, the use of deep learning has been proliferating, yielding promising results in applications across a growing number of fields, most notably in image processing, medical image analysis, data analysis, and bioinformatics. DL algorithms have also had a significant positive impact through yielding improvements in screening, recognition, segmentation, prediction, and classification applications across different domains of healthcare, such as those concerning the abdomen, cardiac, pathology, and retina. Given the extensive body of recent scientific contributions in this discipline, a comprehensive review of deep learning developments in the domain of diabetic retinopathy (DR) analysis, viz., screening, segmentation, prediction, classification, and validation, is presented here. A critical analysis of the relevant reported techniques is carried out, and the associated advantages and limitations highlighted, culminating in the identification of research gaps and future challenges that help to inform the research community to develop more efficient, robust, and accurate DL models for the various challenges in the monitoring and diagnosis of DR.

摘要

深度学习(DL)能够创建包含多个处理层的计算模型,这些模型可以在多个抽象层次上学习数据表示。在最近一段时间,深度学习的使用已经普及,在越来越多的领域的应用中取得了有希望的结果,尤其是在图像处理、医学图像分析、数据分析和生物信息学领域。DL 算法还通过在不同的医疗保健领域(如腹部、心脏、病理学和视网膜)的筛查、识别、分割、预测和分类应用中取得了显著的积极成果。鉴于该学科最近有大量的科学贡献,本文对糖尿病视网膜病变(DR)分析领域的深度学习发展进行了全面的回顾,即筛查、分割、预测、分类和验证。对相关报告的技术进行了批判性分析,并突出了相关的优点和局限性,最终确定了研究差距和未来的挑战,这些差距和挑战有助于为 DR 的监测和诊断中的各种挑战开发更高效、更强大、更准确的 DL 模型,为研究界提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41d9/9505428/2936475a1bf2/sensors-22-06780-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验