Suppr超能文献

基于智能手机的高效学习步长估计(EL-SLE)。

EL-SLE: Efficient Learning Based Stride-Length Estimation Using a Smartphone.

机构信息

School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 21116, China.

出版信息

Sensors (Basel). 2022 Sep 10;22(18):6864. doi: 10.3390/s22186864.

Abstract

The pedestrian stride-length estimation is a crucial piece of personal behavior data for many smartphone applications, such as health monitoring and indoor location. The performance of the present stride-length algorithms is suitable for simple gaits and single scenes, but when applied to sophisticated gaits or heterogeneous devices, their inaccuracy varies dramatically. This paper proposes an efficient learning-based stride-length estimation model using a smartphone to obtain the correct stride length. The model uses adaptive learning to extract different elements for changing and recognition tasks, including Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) modules. The direct fusion method maps the eigenvectors to the appropriate stride length after combining the features from the learning modules. We presented an online learning module to update the model to increase the SLE model's generalization. Extensive experiments are conducted with heterogeneous devices or users, various gaits, and switched scenarios. The results confirm that the proposed method outperforms other state-of-the-art methods and achieves an average 4.26% estimation error rate in various environments.

摘要

行人步长估计是许多智能手机应用程序(如健康监测和室内定位)的个人行为数据的关键部分。目前的步长算法在简单的步态和单一场景下表现良好,但应用于复杂的步态或异构设备时,其准确性会有很大差异。本文提出了一种基于智能手机的高效学习的步长估计模型,用于获取正确的步长。该模型使用自适应学习来提取不同的元素用于变化和识别任务,包括长短期记忆(LSTM)和卷积神经网络(CNN)模块。直接融合方法将特征从学习模块组合后,将特征向量映射到适当的步长上。我们提出了一个在线学习模块来更新模型,以提高 SLE 模型的泛化能力。使用异构设备或用户、各种步态和切换场景进行了广泛的实验。结果表明,该方法优于其他最先进的方法,在各种环境下的平均估计误差率为 4.26%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cba/9501393/9bdc1642c5a4/sensors-22-06864-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验