Suppr超能文献

基于原型网络的基于传感器的人体活动识别的终身自适应机器学习。

Lifelong Adaptive Machine Learning for Sensor-Based Human Activity Recognition Using Prototypical Networks.

机构信息

Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78712, USA.

出版信息

Sensors (Basel). 2022 Sep 12;22(18):6881. doi: 10.3390/s22186881.

Abstract

Continual learning (CL), also known as lifelong learning, is an emerging research topic that has been attracting increasing interest in the field of machine learning. With human activity recognition (HAR) playing a key role in enabling numerous real-world applications, an essential step towards the long-term deployment of such systems is to extend the activity model to dynamically adapt to changes in people's everyday behavior. Current research in CL applied to the HAR domain is still under-explored with researchers exploring existing methods developed for computer vision in HAR. Moreover, analysis has so far focused on task-incremental or class-incremental learning paradigms where task boundaries are known. This impedes the applicability of such methods for real-world systems. To push this field forward, we build on recent advances in the area of continual learning and design a lifelong adaptive learning framework using Prototypical Networks, , that processes sensor-based data streams in a task-free data-incremental fashion and mitigates catastrophic forgetting using experience replay and continual prototype adaptation. Online learning is further facilitated using contrastive loss to enforce inter-class separation. is evaluated on five publicly available activity datasets in terms of its ability to acquire new information while preserving previous knowledge. Our extensive empirical results demonstrate the effectiveness of in task-free CL and uncover useful insights for future challenges.

摘要

持续学习(CL),也称为终身学习,是机器学习领域中一个新兴的研究课题,越来越受到关注。人类活动识别(HAR)在实现众多现实应用中起着关键作用,将此类系统长期部署的一个重要步骤是将活动模型扩展为动态适应人们日常行为的变化。目前应用于 HAR 领域的 CL 研究仍未得到充分探索,研究人员正在探索为计算机视觉开发的现有方法。此外,分析迄今为止主要集中在任务增量或类增量学习范式上,其中任务边界是已知的。这阻碍了此类方法在实际系统中的适用性。为了推动这一领域的发展,我们基于持续学习领域的最新进展,设计了一个使用原型网络的终身自适应学习框架 ,该框架以无任务的数据增量方式处理基于传感器的数据流,并使用经验重放和持续原型自适应来减轻灾难性遗忘。在线学习进一步通过对比损失得到促进,以加强类间分离。 在五个公开可用的活动数据集上评估其在获取新信息的同时保留先前知识的能力。我们的广泛实证结果证明了 在无任务 CL 中的有效性,并为未来的挑战提供了有用的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cac/9504213/69558de4ee52/sensors-22-06881-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验