Suppr超能文献

人工智能用于检测股骨粗隆间骨折:智能医学时代的到来。

Artificial intelligence to detect the femoral intertrochanteric fracture: The arrival of the intelligent-medicine era.

作者信息

Liu Pengran, Lu Lin, Chen Yufei, Huo Tongtong, Xue Mingdi, Wang Honglin, Fang Ying, Xie Yi, Xie Mao, Ye Zhewei

机构信息

Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Department of Orthopedics, The Second Affiliated Hospital of Xiangya School of Medicine, Central South University, Changsha, China.

出版信息

Front Bioeng Biotechnol. 2022 Sep 6;10:927926. doi: 10.3389/fbioe.2022.927926. eCollection 2022.

Abstract

To explore a new artificial intelligence (AI)-aided method to assist the clinical diagnosis of femoral intertrochanteric fracture (FIF), and further compare the performance with human level to confirm the effect and feasibility of the AI algorithm. 700 X-rays of FIF were collected and labeled by two senior orthopedic physicians to set up the database, 643 for the training database and 57 for the test database. A Faster-RCNN algorithm was applied to be trained and detect the FIF on X-rays. The performance of the AI algorithm such as accuracy, sensitivity, miss diagnosis rate, specificity, misdiagnosis rate, and time consumption was calculated and compared with that of orthopedic attending physicians. Compared with orthopedic attending physicians, the Faster-RCNN algorithm performed better in accuracy (0.88 vs. 0.84 ± 0.04), specificity (0.87 vs. 0.71 ± 0.08), misdiagnosis rate (0.13 vs. 0.29 ± 0.08), and time consumption (5 min vs. 18.20 ± 1.92 min). As for the sensitivity and missed diagnosis rate, there was no statistical difference between the AI and orthopedic attending physicians (0.89 vs. 0.87 ± 0.03 and 0.11 vs. 0.13 ± 0.03). The AI diagnostic algorithm is an available and effective method for the clinical diagnosis of FIF. It could serve as a satisfying clinical assistant for orthopedic physicians.

摘要

探索一种新的人工智能(AI)辅助方法,以协助股骨转子间骨折(FIF)的临床诊断,并进一步将其性能与人类水平进行比较,以确认AI算法的效果和可行性。收集了700例FIF的X线片,并由两名资深骨科医生进行标注以建立数据库,其中643例用于训练数据库,57例用于测试数据库。应用Faster-RCNN算法进行训练并检测X线片上的FIF。计算AI算法的准确性、敏感性、漏诊率、特异性、误诊率和时间消耗等性能,并与骨科主治医师的性能进行比较。与骨科主治医师相比,Faster-RCNN算法在准确性(0.88对0.84±0.04)、特异性(0.87对0.71±0.08)、误诊率(0.13对0.29±0.08)和时间消耗(5分钟对18.20±1.92分钟)方面表现更好。至于敏感性和漏诊率,AI与骨科主治医师之间没有统计学差异(0.89对0.87±0.03和0.11对0.13±0.03)。AI诊断算法是FIF临床诊断的一种可用且有效的方法。它可以作为骨科医生令人满意的临床助手。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34fb/9486191/6f8bbb6f2c8b/fbioe-10-927926-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验