Suppr超能文献

空间转录组学的计算解决方案。

Computational solutions for spatial transcriptomics.

作者信息

Kleino Iivari, Frolovaitė Paulina, Suomi Tomi, Elo Laura L

机构信息

Turku Bioscience Centre, University of Turku and Åbo Akademi University Turku, Turku, Finland.

Institute of Biomedicine, University of Turku, Turku, Finland.

出版信息

Comput Struct Biotechnol J. 2022 Sep 1;20:4870-4884. doi: 10.1016/j.csbj.2022.08.043. eCollection 2022.

Abstract

Transcriptome level expression data connected to the spatial organization of the cells and molecules would allow a comprehensive understanding of how gene expression is connected to the structure and function in the biological systems. The spatial transcriptomics platforms may soon provide such information. However, the current platforms still lack spatial resolution, capture only a fraction of the transcriptome heterogeneity, or lack the throughput for large scale studies. The strengths and weaknesses in current ST platforms and computational solutions need to be taken into account when planning spatial transcriptomics studies. The basis of the computational ST analysis is the solutions developed for single-cell RNA-sequencing data, with advancements taking into account the spatial connectedness of the transcriptomes. The scRNA-seq tools are modified for spatial transcriptomics or new solutions like deep learning-based joint analysis of expression, spatial, and image data are developed to extract biological information in the spatially resolved transcriptomes. The computational ST analysis can reveal remarkable biological insights into spatial patterns of gene expression, cell signaling, and cell type variations in connection with cell type-specific signaling and organization in complex tissues. This review covers the topics that help choosing the platform and computational solutions for spatial transcriptomics research. We focus on the currently available ST methods and platforms and their strengths and limitations. Of the computational solutions, we provide an overview of the analysis steps and tools used in the ST data analysis. The compatibility with the data types and the tools provided by the current ST analysis frameworks are summarized.

摘要

与细胞和分子的空间组织相关的转录组水平表达数据,将有助于全面理解基因表达如何与生物系统中的结构和功能相联系。空间转录组学平台可能很快就能提供此类信息。然而,当前的平台仍缺乏空间分辨率,仅能捕获转录组异质性的一部分,或者缺乏大规模研究的通量。在规划空间转录组学研究时,需要考虑当前空间转录组学平台和计算解决方案的优缺点。计算性空间转录组分析的基础是为单细胞RNA测序数据开发的解决方案,并在考虑转录组空间连通性的情况下取得了进展。单细胞RNA测序工具经过修改以用于空间转录组学,或者开发了新的解决方案,如基于深度学习的表达、空间和图像数据联合分析,以从空间分辨的转录组中提取生物学信息。计算性空间转录组分析可以揭示基因表达的空间模式、细胞信号传导以及与复杂组织中细胞类型特异性信号传导和组织相关的细胞类型变化等显著的生物学见解。本综述涵盖了有助于选择空间转录组学研究平台和计算解决方案的主题。我们重点关注当前可用的空间转录组学方法和平台及其优缺点。对于计算解决方案,我们概述了空间转录组数据分析中使用的分析步骤和工具。总结了与数据类型的兼容性以及当前空间转录组分析框架提供的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab5e/9464853/c6a20b46a7fa/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验