Suppr超能文献

切换非线性系统的预定义时间自适应神经跟踪控制

Predefined-Time Adaptive Neural Tracking Control of Switched Nonlinear Systems.

作者信息

Wang Huanqing, Tong Miao, Zhao Xudong, Niu Ben, Yang Man

出版信息

IEEE Trans Cybern. 2023 Oct;53(10):6538-6548. doi: 10.1109/TCYB.2022.3204275. Epub 2023 Sep 15.

Abstract

This article investigates the neural-network-based adaptive predefined-time tracking control problem for switched nonlinear systems. Neural networks are employed to approximate the unknown part of nonlinear functions. The finite-time differentiators are introduced to estimate the first derivative of the virtual controllers. Then, a novel adaptive predefined-time controller is proposed by utilizing the backstepping control technique and the common Lyapunov function (CLF) method. It is explained by the theoretical analysis that the developed controller guarantees that all signals of the switched closed-loop systems are bounded under arbitrary switchings and the tracking error converges to zero within the predefined time. A simulation is shown to verify the validity of the developed predefined-time control approach.

摘要

本文研究了切换非线性系统基于神经网络的自适应预定义时间跟踪控制问题。采用神经网络逼近非线性函数的未知部分。引入有限时间微分器来估计虚拟控制器的一阶导数。然后,利用反步控制技术和公共Lyapunov函数(CLF)方法,提出了一种新型自适应预定义时间控制器。理论分析表明,所设计的控制器保证了切换闭环系统的所有信号在任意切换下都是有界的,并且跟踪误差在预定义时间内收敛到零。通过仿真验证了所提出的预定义时间控制方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验