Suppr超能文献

在不同层厚的非心电图门控低剂量胸部CT上,对用于阿加斯顿钙评分的全自动商业软件进行评估。

Evaluation of fully automated commercial software for Agatston calcium scoring on non-ECG-gated low-dose chest CT with different slice thickness.

作者信息

Kang Hyun Woo, Ahn Woo Jin, Jeong Ju Hyun, Suh Young Joo, Yang Dong Hyun, Choi Hangseok, Hwang Sung Ho, Yong Hwan Seok, Oh Yu-Whan, Kang Eun-Young, Kim Cherry

机构信息

Korea University College of Medicine, Seoul, South Korea.

Department of Radiology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, South Korea.

出版信息

Eur Radiol. 2023 Mar;33(3):1973-1981. doi: 10.1007/s00330-022-09143-1. Epub 2022 Sep 24.

Abstract

OBJECTIVES

To evaluate commercial deep learning-based software for fully automated coronary artery calcium (CAC) scoring on non-electrocardiogram (ECG)-gated low-dose CT (LDCT) with different slice thicknesses compared with manual ECG-gated calcium-scoring CT (CSCT).

METHODS

This retrospective study included 567 patients who underwent both LDCT and CSCT. All LDCT images were reconstructed with a 2.5-mm slice thickness (LDCT), and 453 LDCT scans were reconstructed with a 1.0-mm slice thickness (LDCT). Automated CAC scoring was performed on CSCT (CSCT), LDCT, and LDCT images. The reliability of CSCT, LDCT, and LDCT was compared with manual CSCT scoring (CSCT) using intraclass correlation coefficients (ICCs) and Bland-Altman analysis. Agreement, in CAC severity category, was analyzed using weighted kappa statistics. Diagnostic performance at various Agatston score cutoffs was also calculated.

RESULTS

CSCT, LDCT, and LDCT demonstrated excellent agreement with CSCT (ICC [95% confidence interval, CI]: 1.000 [1.000, 1.000], 0.937 [0.917, 0.952], and 0.955 [0.946, 0.963], respectively). The mean difference with 95% limits of agreement was lower with LDCT than with LDCT (19.94 [95% CI, -244.0, 283.9] vs. 45.26 [-248.2, 338.7]). Regarding CAC severity, LDCT achieved almost perfect agreement, and LDCT achieved substantial agreement (kappa [95% CI]: 0.809 [0.776, 0.838], 0.776 [0.740, 0.809], respectively). Diagnostic performance for detecting Agatston score ≥ 400 was also higher with LDCT than with LDCT (F1 score, 0.929 vs. 0.855).

CONCLUSIONS

Fully automated CAC-scoring software with both CSCT and LDCT yielded excellent reliability and agreement with CSCT. LDCT yielded more accurate Agatston scoring than LDCT using fully automated commercial software.

KEY POINTS

• Total Agatston scores and all vessels of CSCT, LDCT, and LDCT demonstrated excellent agreement with CSCT (all ICC > 0.85). • The diagnostic performance for detecting all Agatston score cutoffs was better with LDCT than with LDCT. • This automated software yielded a lower degree of underestimation compared with methods described in previous studies, and the degree of underestimation was lower with LDCT than with LDCT.

摘要

目的

评估基于深度学习的商业软件在非心电图(ECG)门控低剂量CT(LDCT)上进行全自动冠状动脉钙化(CAC)评分的效果,将不同层厚的LDCT与手动ECG门控钙化评分CT(CSCT)进行比较。

方法

这项回顾性研究纳入了567例同时接受LDCT和CSCT检查的患者。所有LDCT图像均重建为2.5毫米层厚(LDCT),453例LDCT扫描重建为1.0毫米层厚(LDCT)。对CSCT(CSCT)、LDCT和LDCT图像进行自动CAC评分。使用组内相关系数(ICC)和Bland-Altman分析,将CSCT、LDCT和LDCT的可靠性与手动CSCT评分(CSCT)进行比较。使用加权kappa统计分析CAC严重程度类别的一致性。还计算了不同阿加斯顿评分临界值时的诊断性能。

结果

CSCT、LDCT和LDCT与CSCT表现出极佳的一致性(ICC[95%置信区间,CI]:分别为1.000[1.000,1.000]、0.937[0.917,0.952]和0.955[0.946,0.963])。LDCT的95%一致性界限的平均差值低于LDCT(19.94[95%CI,-244.0,283.9]对45.26[-248.2,338.7])。关于CAC严重程度,LDCT几乎达到完美一致,LDCT达到实质性一致(kappa[95%CI]:分别为0.809[0.776,0.838]、0.776[0.740,0.809])。LDCT检测阿加斯顿评分≥400的诊断性能也高于LDCT(F1分数,0.929对0.855)。

结论

CSCT和LDCT的全自动CAC评分软件与CSCT相比具有出色的可靠性和一致性。使用全自动商业软件时,LDCT的阿加斯顿评分比LDCT更准确。

关键点

• CSCT、LDCT和LDCT的总阿加斯顿评分及所有血管与CSCT表现出极佳的一致性(所有ICC>0.85)。• LDCT检测所有阿加斯顿评分临界值的诊断性能优于LDCT。• 与先前研究中描述的方法相比,该自动软件的低估程度较低,且LDCT的低估程度低于LDCT。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验