Computer Science and Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India.
Information Technology, Vishwakarma Government Engineering College, Ahmedabad, Gujarat, India.
Environ Sci Pollut Res Int. 2023 Feb;30(6):14464-14483. doi: 10.1007/s11356-022-23105-6. Epub 2022 Sep 24.
The identification of features that can improve classification accuracy is a major concern in land cover classification research. This paper compares deep learning and transform domain feature extraction techniques for land cover classification of SAR data on balanced and imbalanced training sets. Convolutional autoencoders (CAE), variational autoencoders (VAE), and Haar wavelet transforms (HWT) are used and evaluated for feature generation capability. Variations in features of CAE and HWT help gather more information about the image patch. The fusion of CAE and HWT features provides a combination of high- and low-frequency coefficients, respectively, which improves classification accuracy for various land covers. To assess features generated through fusion of features, RISAT-1 C-band and AIRSAR L-band datasets are used. Furthermore, agricultural/grass land has similar features with open forest which leads to misclassification of forest in agricultural/grass land. Increasing the number of samples in each class using the Synthetic Minority Oversampling Technique (SMOTE) increases training samples. Hierarchical classification of the above-mentioned features, where agricultural/grass land and forest classes are discriminated, improves classification results. This paper evaluates all the three types of features and fused features and provides a guidance for land cover classification.
在土地覆盖分类研究中,识别能够提高分类准确性的特征是一个主要关注点。本文比较了深度学习和变换域特征提取技术在平衡和不平衡训练集上的 SAR 数据土地覆盖分类中的应用。本文使用卷积自动编码器(CAE)、变分自动编码器(VAE)和 Haar 小波变换(HWT)来评估其特征生成能力。CAE 和 HWT 的特征变化有助于收集关于图像块的更多信息。CAE 和 HWT 特征的融合分别提供了高频和低频系数的组合,从而提高了各种土地覆盖的分类精度。为了评估通过融合特征生成的特征,本文使用了 RISAT-1 C 波段和 AIRSAR L 波段数据集。此外,农业/草地与开阔林的特征相似,导致森林在农业/草地中的分类错误。使用合成少数过采样技术(SMOTE)增加每个类中的样本数量可以增加训练样本。对上述特征进行分层分类,区分农业/草地和森林类,可以提高分类结果。本文评估了所有三种类型的特征和融合特征,并为土地覆盖分类提供了指导。