Suppr超能文献

按牙列划分的龋齿活跃和无龋齿牙齿的斑块微生物组。

Plaque Microbiome in Caries-Active and Caries-Free Teeth by Dentition.

机构信息

Center of Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA.

Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA.

出版信息

JDR Clin Trans Res. 2024 Jan;9(1):61-71. doi: 10.1177/23800844221121260. Epub 2022 Sep 25.

Abstract

OBJECTIVE

Describe associations between dental caries and dental plaque microbiome, by dentition and family membership.

METHODS

This cross-sectional analysis included 584 participants in the Center for Oral Health Research in Appalachia Cohort 1 (COHRA1). We sequenced the 16S ribosomal RNA gene (V4 region) of frozen supragingival plaque, collected 10 y prior, from 185 caries-active (enamel and dentinal) and 565 caries-free (no lesions) teeth using the Illumina MiSeq platform. Sequences were filtered using the R DADA2 package and assigned taxonomy using the Human Oral Microbiome Database.

RESULTS

Microbiomes of caries-active and caries-free teeth were most similar in primary dentition and least similar in permanent dentition, but caries-active teeth were significantly less diverse than caries-free teeth in all dentition types. Streptococcus mutans had greater relative abundance in caries-active than caries-free teeth in all dentition types ( < 0.01), as did in primary and mixed dentition ( < 0.01). sp. HMT 203 had significantly higher relative abundance in caries-free than caries-active teeth in all dentition types ( < 0.01). In a linear mixed model adjusted for confounders, the relative abundance of was significantly greater in plaque from caries-active than caries-free teeth ( < 0.001), and the relative abundance of sp. HMT 203 was significantly lower in plaque from caries-active than caries-free teeth ( < 0.001). Adding an effect for family improved model fit for sp. HMT 203 but not.

CONCLUSIONS

The diversity of supragingival plaque composition from caries-active and caries-free teeth changed with dentition, but was positively and sp. HMT 203 was negatively associated with caries regardless of dentition. There was a strong effect of family on the associations of sp. HMT 203 with the caries-free state, but this was not true for and the caries-active state.

KNOWLEDGE TRANSFER STATEMENT

Patients' and dentists' concerns about transmission of bacteria within families causing caries should be tempered by the evidence that some shared bacteria may contribute to good oral health.

摘要

目的

描述不同牙列和家庭成员中龋齿与牙菌斑微生物组之间的关联。

方法

本横断面分析纳入了中心口腔健康研究阿巴拉契亚队列 1(COHRA1)中的 584 名参与者。我们使用 Illumina MiSeq 平台对 10 年前采集的冷冻龈上菌斑中 16S 核糖体 RNA 基因(V4 区)进行了测序,这些菌斑来自 185 颗龋齿活跃(牙釉质和牙本质)和 565 颗无龋齿(无病变)的牙齿。使用 R DADA2 软件包对序列进行过滤,并使用人类口腔微生物组数据库对分类单元进行赋值。

结果

在乳牙列中,龋齿活跃和无龋齿牙齿的微生物组最相似,而在恒牙列中最不相似,但在所有牙列类型中,龋齿活跃牙齿的多样性显著低于无龋齿牙齿。在所有牙列类型中,变形链球菌在龋齿活跃牙齿中的相对丰度均高于无龋齿牙齿(<0.01),而在乳牙列和混合牙列中(<0.01)也是如此。在所有牙列类型中,HMT 203 种属的相对丰度在无龋齿牙齿中显著高于龋齿活跃牙齿(<0.01)。在调整了混杂因素的线性混合模型中,与无龋齿牙齿相比,龋齿活跃牙齿的菌斑中丰度显著更高(<0.001),而龋齿活跃牙齿的菌斑中 HMT 203 种属的相对丰度显著更低(<0.001)。添加家庭效应可以改善 HMT 203 种属与无龋齿状态的关联模型拟合度,但不能改善与龋齿活跃状态的关联。

结论

无论牙列如何,龋齿活跃和无龋齿牙齿的龈上菌斑组成的多样性都会发生变化,但无论牙列如何,都与龋齿呈正相关,而 HMT 203 种属则与龋齿呈负相关。家庭对 HMT 203 种属与无龋齿状态的关联有强烈影响,但对与龋齿活跃状态的关联没有影响。

知识转移陈述

患者和牙医对细菌在家庭内传播导致龋齿的担忧应该有所缓和,因为有证据表明,一些共同的细菌可能有助于良好的口腔健康。

相似文献

1
Plaque Microbiome in Caries-Active and Caries-Free Teeth by Dentition.
JDR Clin Trans Res. 2024 Jan;9(1):61-71. doi: 10.1177/23800844221121260. Epub 2022 Sep 25.
3
Dental plaque microbiota profiles of children with caries-free and caries-active dentition.
J Dent. 2021 Jan;104:103539. doi: 10.1016/j.jdent.2020.103539. Epub 2020 Nov 25.
4
Distinctions and associations between the microbiota of saliva and supragingival plaque of permanent and deciduous teeth.
PLoS One. 2018 Jul 6;13(7):e0200337. doi: 10.1371/journal.pone.0200337. eCollection 2018.
5
Metabolic differences of the oral microbiome related to dental caries - A pilot study.
Arch Oral Biol. 2022 Sep;141:105471. doi: 10.1016/j.archoralbio.2022.105471. Epub 2022 Jun 6.
7
Tooth-Specific Distribution and Associated Microbiome.
Microorganisms. 2022 May 31;10(6):1129. doi: 10.3390/microorganisms10061129.
8
The complex microbiome of caries-active and caries-free supragingival plaques in permanent dentition.
Niger J Clin Pract. 2021 Oct;24(10):1535-1540. doi: 10.4103/njcp.njcp_49_21.
9
Clonal analysis of the microbiota of severe early childhood caries.
Caries Res. 2010;44(5):485-97. doi: 10.1159/000320158. Epub 2010 Sep 23.
10
Salivary Microbiome Diversity in Caries-Free and Caries-Affected Children.
Int J Mol Sci. 2016 Nov 25;17(12):1978. doi: 10.3390/ijms17121978.

本文引用的文献

1
Cariogenic and oral health taxa in the oral cavity among children and adults: A scoping review.
Arch Oral Biol. 2021 Sep;129:105204. doi: 10.1016/j.archoralbio.2021.105204. Epub 2021 Jun 30.
2
Association Between Oral Microbiota and Cigarette Smoking in the Chinese Population.
Front Cell Infect Microbiol. 2021 May 28;11:658203. doi: 10.3389/fcimb.2021.658203. eCollection 2021.
5
Dental plaque microbiota profiles of children with caries-free and caries-active dentition.
J Dent. 2021 Jan;104:103539. doi: 10.1016/j.jdent.2020.103539. Epub 2020 Nov 25.
6
Comparative proteomic analysis of dental cementum from deciduous and permanent teeth.
J Periodontal Res. 2021 Jan;56(1):173-185. doi: 10.1111/jre.12808. Epub 2020 Nov 19.
7
Revealing oral microbiota composition and functionality associated with heavy cigarette smoking.
J Transl Med. 2020 Nov 10;18(1):421. doi: 10.1186/s12967-020-02579-3.
8
Maternal Oral Health Influences Infant Salivary Microbiome.
J Dent Res. 2021 Jan;100(1):58-65. doi: 10.1177/0022034520947665. Epub 2020 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验