Suppr超能文献

噬菌体参考数据库的基础设施:识别当前培养噬菌体基因组集合中的大规模偏差

INfrastructure for a PHAge REference Database: Identification of Large-Scale Biases in the Current Collection of Cultured Phage Genomes.

作者信息

Cook Ryan, Brown Nathan, Redgwell Tamsin, Rihtman Branko, Barnes Megan, Clokie Martha, Stekel Dov J, Hobman Jon, Jones Michael A, Millard Andrew

机构信息

School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom.

Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom.

出版信息

Phage (New Rochelle). 2021 Dec 1;2(4):214-223. doi: 10.1089/phage.2021.0007. Epub 2021 Dec 16.

Abstract

With advances in sequencing technology and decreasing costs, the number of phage genomes that have been sequenced has increased markedly in the past decade. We developed an automated retrieval and analysis system for phage genomes (https://github.com/RyanCook94/inphared) to produce the INfrastructure for a PHAge REference Database (INPHARED) of phage genomes and associated metadata. As of January 2021, 14,244 complete phage genomes have been sequenced. The INPHARED data set is dominated by phages that infect a small number of bacterial genera, with 75% of phages isolated on only 30 bacterial genera. There is further bias, with significantly more lytic phage genomes (∼70%) than temperate (∼30%) within our database. Collectively, this results in ∼54% of temperate phage genomes originating from just three host genera. With much debate on the carriage of antibiotic resistance genes and their potential safety in phage therapy, we searched for putative antibiotic resistance genes. Frequency of antibiotic resistance gene carriage was found to be higher in temperate phages than in lytic phages and again varied with host. Given the bias of currently sequenced phage genomes, we suggest to fully understand phage diversity, efforts should be made to isolate and sequence a larger number of phages, in particular temperate phages, from a greater diversity of hosts.

相似文献

1
INfrastructure for a PHAge REference Database: Identification of Large-Scale Biases in the Current Collection of Cultured Phage Genomes.
Phage (New Rochelle). 2021 Dec 1;2(4):214-223. doi: 10.1089/phage.2021.0007. Epub 2021 Dec 16.
2
Mining bacterial NGS data vastly expands the complete genomes of temperate phages.
NAR Genom Bioinform. 2022 Aug 3;4(3):lqac057. doi: 10.1093/nargab/lqac057. eCollection 2022 Sep.
3
Genetic characteristics and integration specificity of temperate phages.
Front Microbiol. 2023 Aug 1;14:1199843. doi: 10.3389/fmicb.2023.1199843. eCollection 2023.
4
The Isolation and Genome Sequencing of Five Novel Bacteriophages From the Rumen Active Against .
Front Microbiol. 2020 Jul 14;11:1588. doi: 10.3389/fmicb.2020.01588. eCollection 2020.
5
Diversity and phage sensitivity to phages of porcine enterotoxigenic .
Appl Environ Microbiol. 2024 Jul 24;90(7):e0080724. doi: 10.1128/aem.00807-24. Epub 2024 Jun 28.
7
The Role of Temperate Phages in Bacterial Pathogenicity.
Microorganisms. 2023 Feb 21;11(3):541. doi: 10.3390/microorganisms11030541.

引用本文的文献

1
Diversity and abundance of ring nucleases in type III CRISPR-Cas loci.
Philos Trans R Soc Lond B Biol Sci. 2025 Sep 4;380(1934):20240084. doi: 10.1098/rstb.2024.0084.
2
Presence of group II introns in phage genomes.
Nucleic Acids Res. 2025 Aug 11;53(15). doi: 10.1093/nar/gkaf761.
3
Phage Host Range Expansion Through Directed Evolution on Highly Phage-Resistant Strains of .
Int J Mol Sci. 2025 Aug 6;26(15):7597. doi: 10.3390/ijms26157597.
4
6
Genome sequence of staphylococcal phage ESa4 of the genus .
Microbiol Resour Announc. 2025 Aug 14;14(8):e0028025. doi: 10.1128/mra.00280-25. Epub 2025 Jul 25.
7
Structural modeling reveals viral proteins that manipulate host immune signaling.
bioRxiv. 2025 Jul 12:2025.07.12.664507. doi: 10.1101/2025.07.12.664507.
9
Prevalence of Group II Introns in Phage Genomes.
bioRxiv. 2025 May 23:2025.05.22.655115. doi: 10.1101/2025.05.22.655115.
10
Cytokines Meet Phages: A Revolutionary Pathway to Modulating Immunity and Microbial Balance.
Biomedicines. 2025 May 15;13(5):1202. doi: 10.3390/biomedicines13051202.

本文引用的文献

1
Identifying viruses from metagenomic data using deep learning.
Quant Biol. 2020 Mar;8(1):64-77. doi: 10.1007/s40484-019-0187-4.
5
The EnteroBase user's guide, with case studies on transmissions, phylogeny, and core genomic diversity.
Genome Res. 2020 Jan;30(1):138-152. doi: 10.1101/gr.251678.119. Epub 2019 Dec 6.
6
Whole-Virome Analysis Sheds Light on Viral Dark Matter in Inflammatory Bowel Disease.
Cell Host Microbe. 2019 Dec 11;26(6):764-778.e5. doi: 10.1016/j.chom.2019.10.009. Epub 2019 Nov 19.
7
GenBank.
Nucleic Acids Res. 2020 Jan 8;48(D1):D84-D86. doi: 10.1093/nar/gkz956.
9
Viruses as key reservoirs of antibiotic resistance genes in the environment.
ISME J. 2019 Nov;13(11):2856-2867. doi: 10.1038/s41396-019-0478-9. Epub 2019 Jul 29.
10
Analysis of Spounaviruses as a Case Study for the Overdue Reclassification of Tailed Phages.
Syst Biol. 2020 Jan 1;69(1):110-123. doi: 10.1093/sysbio/syz036.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验