Suppr超能文献

基于深度学习的阿尔茨海默病分类的可靠性:多队列、多供应商、多协议及直接比较验证

On the reliability of deep learning-based classification for Alzheimer's disease: Multi-cohorts, multi-vendors, multi-protocols, and head-to-head validation.

作者信息

Song Yeong-Hun, Yi Jun-Young, Noh Young, Jang Hyemin, Seo Sang Won, Na Duk L, Seong Joon-Kyung

机构信息

Department of Artificial Intelligence, Korea University, Seoul, South Korea.

Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea.

出版信息

Front Neurosci. 2022 Sep 7;16:851871. doi: 10.3389/fnins.2022.851871. eCollection 2022.

Abstract

Structural changes in the brain due to Alzheimer's disease dementia (ADD) can be observed through brain T1-weighted magnetic resonance imaging (MRI) images. Many ADD diagnostic studies using brain MRI images have been conducted with machine-learning and deep-learning models. Although reliability is a key in clinical application and applicability of low-resolution MRI (LRMRI) is a key to broad clinical application, both are not sufficiently studied in the deep-learning area. In this study, we developed a 2-dimensional convolutional neural network-based classification model by adopting several methods, such as using instance normalization layer, Mixup, and sharpness aware minimization. To train the model, MRI images from 2,765 cognitively normal individuals and 1,192 patients with ADD from the Samsung medical center cohort were exploited. To assess the reliability of our classification model, we designed external validation in multiple scenarios: (1) multi-cohort validation using four additional cohort datasets including more than 30 different centers in multiple countries, (2) multi-vendor validation using three different MRI vendor subgroups, (3) LRMRI image validation, and finally, (4) head-to-head validation using ten pairs of MRI images from ten individual subjects scanned in two different centers. For multi-cohort validation, we used the MRI images from 739 subjects from the Alzheimer's Disease Neuroimaging Initiative cohort, 125 subjects from the Dementia Platform of Korea cohort, 234 subjects from the Premier cohort, and 139 subjects from the Gachon University Gil Medical Center. We further assessed classification performance across different vendors and protocols for each dataset. We achieved a mean AUC and classification accuracy of 0.9868 and 0.9482 in 5-fold cross-validation. In external validation, we obtained a comparable AUC of 0.9396 and classification accuracy of 0.8757 to other cross-validation studies in the ADNI cohorts. Furthermore, we observed the possibility of broad clinical application through LRMRI image validation by achieving a mean AUC and classification accuracy of 0.9404 and 0.8765 at cross-validation and AUC and classification accuracy of 0.8749 and 0.8281 at the ADNI cohort external validation.

摘要

阿尔茨海默病性痴呆(ADD)导致的大脑结构变化可通过脑部T1加权磁共振成像(MRI)图像观察到。许多使用脑部MRI图像的ADD诊断研究都是利用机器学习和深度学习模型进行的。尽管可靠性是临床应用的关键,而低分辨率MRI(LRMRI)的适用性是广泛临床应用的关键,但在深度学习领域,对这两者的研究都还不够充分。在本研究中,我们采用了多种方法,如使用实例归一化层、Mixup和锐度感知最小化,开发了一种基于二维卷积神经网络的分类模型。为了训练该模型,我们利用了三星医疗中心队列中2765名认知正常个体和1192名ADD患者的MRI图像。为了评估我们分类模型的可靠性,我们在多种场景下设计了外部验证:(1)使用包括多个国家30多个不同中心的另外四个队列数据集进行多队列验证;(2)使用三个不同MRI供应商子组进行多供应商验证;(3)LRMRI图像验证;最后,(4)使用在两个不同中心扫描的十名个体受试者的十对MRI图像进行直接对比验证。对于多队列验证,我们使用了来自阿尔茨海默病神经影像倡议队列的739名受试者、韩国痴呆症平台队列的125名受试者、Premier队列的234名受试者以及加川大学吉尔医疗中心的139名受试者的MRI图像。我们还进一步评估了每个数据集在不同供应商和协议下的分类性能。在5折交叉验证中,我们实现了平均AUC为0.9868,分类准确率为0.9482。在外部验证中,我们在ADNI队列中获得了与其他交叉验证研究相当的AUC为0.9396,分类准确率为0.8757。此外,通过LRMRI图像验证,我们在交叉验证时实现了平均AUC为0.9404,分类准确率为0.8765,在ADNI队列外部验证时实现了AUC为0.8749,分类准确率为0.8281,从而观察到了广泛临床应用的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6abb/9490270/f1d9a9181b4d/fnins-16-851871-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验