Suppr超能文献

同时使用贝叶斯指标低秩克里金多重成员模型估计混合效应和随时间累积的空间风险。

Estimating mixture effects and cumulative spatial risk over time simultaneously using a Bayesian index low-rank kriging multiple membership model.

机构信息

Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA.

Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA.

出版信息

Stat Med. 2022 Dec 20;41(29):5679-5697. doi: 10.1002/sim.9587. Epub 2022 Sep 25.

Abstract

The exposome is an ideal in public health research that posits that individuals experience risk for adverse health outcomes from a wide variety of sources over their lifecourse. There have been increases in data collection in the various components of the exposome, but novel statistical methods are needed that capture multiple dimensions of risk at once. We introduce a Bayesian index low-rank kriging (LRK) multiple membership model (MMM) to simultaneously estimate the health effects of one or more groups of exposures, the relative importance of exposure components, and cumulative spatial risk over time using residential histories. The model employs an MMM to consider all residential locations for subjects weighted by duration and LRK to increase computational efficiency. We demonstrate the performance of the Bayesian index LRK-MMM through a simulation study, showing that the model accurately and consistently estimates the health effects of one or several group indices and has high power to identify a region of elevated spatial risk due to unmeasured environmental exposures. Finally, we apply our model to data from a multicenter case-control study of non-Hodgkin lymphoma (NHL), finding a significant positive association between one index of pesticides and risk for NHL in Iowa. Additionally, we find an area of significantly elevated spatial risk for NHL in Los Angeles. In conclusion, our Bayesian index LRK-MMM represents a step forward toward bringing the ideals of the exposome into practice for environmental risk analyzes.

摘要

暴露组学是公共卫生研究中的一个理想概念,它认为个体在其整个生命过程中会受到来自各种来源的不良健康结果的风险。暴露组学的各个组成部分的数据收集有所增加,但需要新的统计方法来同时捕捉风险的多个维度。我们引入了一种贝叶斯指数低秩克里金(LRK)多成员模型(MMM),以利用居住史同时估计一个或多个暴露组的健康影响、暴露成分的相对重要性以及随时间推移的累积空间风险。该模型采用 MMM 考虑所有居住地点的受试者,权重为持续时间,LRK 提高计算效率。我们通过模拟研究展示了贝叶斯指数 LRK-MMM 的性能,表明该模型可以准确一致地估计一个或几个组指标的健康影响,并且具有很高的能力来识别由于未测量的环境暴露而导致的空间风险升高的区域。最后,我们将我们的模型应用于一项多中心病例对照研究非霍奇金淋巴瘤(NHL)的数据,发现爱荷华州一个杀虫剂指数与 NHL 风险之间存在显著正相关。此外,我们发现洛杉矶的 NHL 空间风险显著升高。总之,我们的贝叶斯指数 LRK-MMM 代表着将暴露组学的理想应用于环境风险分析的一个进步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3206/9826094/49ba21e09ba0/SIM-41-5679-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验