Suppr超能文献

金属有机框架衍生的ZnO@GC纳米结构作为一种具有改进选择性和气体响应的高效氢气传感器。

Metal Organic Framework-Derived ZnO@GC Nanoarchitecture as an Effective Hydrogen Gas Sensor with Improved Selectivity and Gas Response.

作者信息

Sharma Ashutosh, Karuppasamy K, Vikraman Dhanasekaran, Cho Yoona, Adaikalam Kathalingam, Korvink Jan G, Kim Hyun-Seok, Sharma Bharat

机构信息

Department of Materials Science and Engineering, Ajou University, 206-Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea.

Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2022 Oct 5;14(39):44516-44526. doi: 10.1021/acsami.2c10706. Epub 2022 Sep 26.

Abstract

Although they are not as favorable as other influential gas sensors, metal-oxide semiconductor-based chemiresistors ensure minimal surface reactivity, restricting their gas selectivity, gas response, and reaction kinetics, particularly when functioning at room temperature (RT). A hybrid design, which includes metal-oxide/carbon nanostructures and passivation with specific gas filtration layers, can address the concerns of surface reactivity. We present a novel hierarchical nanostructured zinc oxide (ZnO), decorated with graphitic carbon (GC) and synthesized via a wet-chemical strategy, which is then followed by the self-assembly of a zeolitic imidazolate framework (ZIF-8). Because of its large surface area, high porosity, and efficient inspection of other analyte (interfering) gases, the ZnO@GC can provide intensified surface reactivity at RT. In the present study, such a hybrid sensor confirmed extraordinary gas sensing properties, which was characterized by excellent H selectivity, fast response, rapid recovery kinetics, and high gas response (Δ/ ∼ 124.6%@10 ppm), particularly in extremely humid environments. The results reveal that adsorption sites provided by the ZIF-8 template-based ZnO@GC frameworks facilitate the adsorption and desorption of H.

摘要

尽管基于金属氧化物半导体的化学电阻器不如其他有影响力的气体传感器那样理想,但它们能确保表面反应性最小化,这限制了它们的气体选择性、气体响应和反应动力学,尤其是在室温(RT)下工作时。一种包括金属氧化物/碳纳米结构和用特定气体过滤层进行钝化的混合设计,可以解决表面反应性的问题。我们展示了一种新颖的分级纳米结构氧化锌(ZnO),它用石墨碳(GC)装饰并通过湿化学策略合成,随后进行沸石咪唑酯骨架(ZIF-8)的自组装。由于其大表面积、高孔隙率以及对其他分析物(干扰)气体的有效检测,ZnO@GC在室温下能提供增强的表面反应性。在本研究中,这样一种混合传感器证实了非凡的气敏特性,其特点是对H具有优异的选择性、快速响应、快速恢复动力学以及高气体响应(在10 ppm时Δ/ ∼ 124.6%),特别是在极端潮湿的环境中。结果表明,基于ZIF-8模板的ZnO@GC框架提供的吸附位点促进了H的吸附和解吸。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验