Suppr超能文献

利用谷歌地球引擎的光谱指数研究地表温度与景观特征之间的关系。

Examining the relationship between land surface temperature and landscape features using spectral indices with Google Earth Engine.

作者信息

Roy Bishal, Bari Ehsanul

机构信息

Department of Geography and Environmental Science, Faculty of Life and Earth Sciences, Begum Rokeya University, Rangpur, 5404, Bangladesh.

Department of Environmental Science and Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.

出版信息

Heliyon. 2022 Sep 18;8(9):e10668. doi: 10.1016/j.heliyon.2022.e10668. eCollection 2022 Sep.

Abstract

Land surface temperature (LST) is strongly influenced by landscape features as they change the thermal characteristics of the surface greatly. Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Built-up Index (NDBI), and Normalized Difference Bareness Index (NDBAI) correspond to vegetation cover, water bodies, impervious build-ups, and bare lands, respectively. These indices were utilized to demonstrate the relationship between multiple landscape features and LST using the spectral indices derived from images of Landsat 5 Thematic Mapper (TM), and Landsat 8 Operational Land Imager (OLI) of Sylhet Sadar Upazila (2000-2018). Google Earth Engine (GEE) cloud computing platform was used to filter, process, and analyze trends with logistic regression. LST and other spectral indices were calculated. Changes in LST (2000-2018) range from -6 °C to +4 °C in the study area. Because of higher vegetation cover and reserve forest, the north-eastern part of the study region had the greatest variations in LST. The spectral indices corresponding to landscape features have a considerable explanatory capacity for describing LST scenarios. The correlation of these indices with LST ranges from -0.52 (NDBI) to +0.57 (NDVI).

摘要

地表温度(LST)受景观特征的强烈影响,因为景观特征极大地改变了地表的热特性。归一化植被指数(NDVI)、归一化水体指数(NDWI)、归一化建筑指数(NDBI)和归一化裸地指数(NDBAI)分别对应植被覆盖、水体、不透水建筑和裸地。利用这些指数,通过从锡尔赫特萨达尔乌帕齐拉(2000 - 2018年)的陆地卫星5专题制图仪(TM)和陆地卫星8业务陆地成像仪(OLI)图像中导出的光谱指数,来展示多种景观特征与地表温度之间的关系。使用谷歌地球引擎(GEE)云计算平台进行滤波、处理,并通过逻辑回归分析趋势。计算了地表温度和其他光谱指数。研究区域内地表温度(2000 - 2018年)的变化范围为 -6℃至 +4℃。由于植被覆盖度较高和有保留森林,研究区域的东北部地表温度变化最大。与景观特征对应的光谱指数在描述地表温度情况方面具有相当大的解释能力。这些指数与地表温度的相关性范围从 -0.52(NDBI)到 +0.57(NDVI)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c3a/9508483/168fa282a0fa/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验