Suppr超能文献

人工智能和机器学习技术在死后间隔预测中的应用:临床前和临床研究的系统评价。

Application of artificial intelligence and machine learning technology for the prediction of postmortem interval: A systematic review of preclinical and clinical studies.

机构信息

Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences (AIIMS) Rishikesh, Uttarakhand, India.

Department of Microbiology, All India Institute of Medical Sciences (AIIMS) Rishikesh, Uttarakhand, India.

出版信息

Forensic Sci Int. 2022 Nov;340:111473. doi: 10.1016/j.forsciint.2022.111473. Epub 2022 Sep 20.

Abstract

BACKGROUND /PURPOSE: Establishing an accurate postmortem interval (PMI) is exceptionally crucial in forensic investigation. Artificial intelligence (AI) and Machine learning (ML) models are widely employed in forensic practice. ML is a part of AI, both terms are highly associated and sometimes used interchangeably. This systematic review aims to evaluate the application and performance of AI technology for the prediction of PMI.

METHODS

Systematic literature search across different electronic databases using PubMed/Google Scholar/EMBASE/Scopus/CINAHL/Web of Science/Cochrane library was conducted from inception to 3 December 2021 for preclinical and clinical studies reported ML models for PMI estimation.

RESULTS

We identified 18 studies (12 preclinical and 06 clinical) that met the inclusion criteria in the qualitative analysis. Most of the studies employed supervised learning (N = 15), and others employed unsupervised learning (N = 3). Due to the heterogeneity of the samples, quantitative analysis was not performed.

CONCLUSION

In this systematic review, we discussed the performance of AI-based automated systems in PMI estimation. ML models have demonstrated accuracy and precision and the ability to overcome human errors and bias. However, the research is limited, conducted in primarily small, selected human populations. In addition, we suggest further research in larger population-based studies is needed to fully understand the extent of integrated ML models.

摘要

背景/目的:在法医调查中,准确确定死后时间(PMI)至关重要。人工智能(AI)和机器学习(ML)模型广泛应用于法医实践。ML 是 AI 的一部分,这两个术语高度相关,有时可以互换使用。本系统评价旨在评估 AI 技术在 PMI 预测中的应用和性能。

方法

从 2021 年 12 月 3 日开始,通过 PubMed/Google Scholar/EMBASE/Scopus/CINAHL/Web of Science/Cochrane 图书馆对不同电子数据库进行系统文献检索,以查找报道用于 PMI 估计的 ML 模型的临床前和临床研究。

结果

我们在定性分析中确定了 18 项符合纳入标准的研究(12 项临床前和 06 项临床)。大多数研究采用监督学习(N=15),其他研究采用无监督学习(N=3)。由于样本的异质性,未进行定量分析。

结论

在本系统评价中,我们讨论了基于 AI 的自动系统在 PMI 估计中的性能。ML 模型已经证明了准确性和精密度,并且能够克服人为错误和偏见。然而,研究是有限的,主要在小的、选定的人群中进行。此外,我们建议在更大的基于人群的研究中进行进一步研究,以充分了解集成 ML 模型的程度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验