Faculty of Physics and CeNS, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, Munich, Germany.
Max Planck Institute of Biochemistry and CeNS, Ludwig-Maximilians-Universität München, Am Klopferspitz 18, 82152, Martinsried, Germany.
Nat Commun. 2022 Sep 27;13(1):5668. doi: 10.1038/s41467-022-33083-5.
Silicification of DNA origami structures increases their stability and provides chemical protection. Yet, it is unclear whether the whole DNA framework is embedded or if silica just forms an outer shell and how silicification affects the origami's internal structure. Employing in situ small-angle X-ray scattering (SAXS), we show that addition of silica precursors induces substantial condensation of the DNA origami at early reaction times by almost 10 %. Subsequently, the overall size of the silicified DNA origami increases again due to increasing silica deposition. We further identify the SAXS Porod invariant as a reliable, model-free parameter for the evaluation of the amount of silica formation at a given time. Contrast matching of the DNA double helix Lorentzian peak reveals silica growth also inside the origami. The less polar silica forming within the origami structure, replacing more than 40 % of the internal hydration water, causes a hydrophobic effect: condensation. DNA origami objects with flat surfaces show a strong tendency towards aggregation during silicification, presumably driven by the same entropic forces causing condensation. Maximally condensed origami displayed thermal stability up to 60 °C. Our studies provide insights into the silicification reaction allowing for the formulation of optimized reaction protocols.
DNA 折纸结构的硅化增加了其稳定性,并提供了化学保护。然而,目前尚不清楚整个 DNA 框架是否被嵌入,或者二氧化硅是否只是形成了外壳,以及硅化如何影响折纸的内部结构。我们采用原位小角 X 射线散射(SAXS)技术,结果表明,在早期反应阶段,添加硅烷前体可使 DNA 折纸发生近 10%的显著缩合。随后,由于二氧化硅的不断沉积,硅化 DNA 折纸的整体尺寸再次增大。我们进一步将 SAXS Porod 不变量确定为评估给定时间内二氧化硅形成量的可靠、无模型参数。DNA 双螺旋洛伦兹峰的对比匹配表明,二氧化硅也在折纸内部生长。在折纸结构内形成的极性较小的二氧化硅取代了超过 40%的内部水合水,导致疏水性效应:缩合。具有平整表面的 DNA 折纸物体在硅化过程中表现出强烈的聚集趋势,这可能是由导致缩合的相同熵力驱动的。最大程度缩合的折纸显示出高达 60°C 的热稳定性。我们的研究深入了解了硅化反应,为优化反应方案提供了依据。