Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive (LINC), Université de Bourgogne Franche-Comté, Besançon, France.
FEMTO-ST Institute (CNRS/Université de Bourgogne Franche Comté), Besançon, France.
J Neurophysiol. 2022 Dec 1;128(6):1375-1382. doi: 10.1152/jn.00221.2022. Epub 2022 Sep 28.
Machine-learning systems that classify electroencephalography (EEG) data offer important perspectives for the diagnosis and prognosis of a wide variety of neurological and psychiatric conditions, but their clinical adoption remains low. We propose here that much of the difficulties translating EEG-machine-learning research to the clinic result from consistent inaccuracies in their technical reporting, which severely impair the interpretability of their often-high claims of performance. Taking example from a major class of machine-learning algorithms used in EEG research, the support-vector machine (SVM), we highlight three important aspects of model development (normalization, hyperparameter optimization, and cross-validation) and show that, while these three aspects can make or break the performance of the system, they are left entirely undocumented in a shockingly vast majority of the research literature. Providing a more systematic description of these aspects of model development constitute three simple steps to improve the interpretability of EEG-SVM research and, in fine, its clinical adoption.
机器学习系统对脑电图 (EEG) 数据进行分类,为诊断和预测各种神经和精神疾病提供了重要视角,但它们的临床应用仍然很低。我们在这里提出,将 EEG 机器学习研究转化为临床应用的困难很大程度上源于其技术报告中的一致性不准确,这严重影响了其性能的高声称的可解释性。以脑电图研究中使用的一种主要机器学习算法——支持向量机 (SVM) 为例,我们强调了模型开发的三个重要方面(归一化、超参数优化和交叉验证),并表明,尽管这三个方面可以决定系统的性能,但它们在绝大多数研究文献中都没有记录。对模型开发的这些方面进行更系统的描述,构成了提高 EEG-SVM 研究的可解释性并最终提高其临床应用的三个简单步骤。