Suppr超能文献

介绍ARTMO的机器学习分类算法工具箱:应用于伊朗半草原景观中的植物类型检测

Introducing ARTMO's Machine-Learning Classification Algorithms Toolbox: Application to Plant-Type Detection in a Semi-Steppe Iranian Landscape.

作者信息

Aghababaei Masoumeh, Ebrahimi Ataollah, Naghipour Ali Asghar, Asadi Esmaeil, Pérez-Suay Adrián, Morata Miguel, Garcia Jose Luis, Caicedo Juan Pablo Rivera, Verrelst Jochem

机构信息

Department of Range and Watershed Management, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord 8818634141, Iran.

Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain.

出版信息

Remote Sens (Basel). 2022 Sep 6;14(18):4452. doi: 10.3390/rs14184452.

Abstract

Accurate plant-type (PT) detection forms an important basis for sustainable land management maintaining biodiversity and ecosystem services. In this sense, Sentinel-2 satellite images of the Copernicus program offer spatial, spectral, temporal, and radiometric characteristics with great potential for mapping and monitoring PTs. In addition, the selection of a best-performing algorithm needs to be considered for obtaining PT classification as accurate as possible. To date, no freely downloadable toolbox exists that brings the diversity of the latest supervised machine-learning classification algorithms (MLCAs) together into a single intuitive user-friendly graphical user interface (GUI). To fill this gap and to facilitate and automate the usage of MLCAs, here we present a novel GUI software package that allows systematically training, validating, and applying pixel-based MLCA models to remote sensing imagery. The so-called MLCA toolbox has been integrated within ARTMO's software framework developed in Matlab which implements most of the state-of-the-art methods in the machine learning community. To demonstrate its utility, we chose a heterogeneous case study scene, a landscape in Southwest Iran to map PTs. In this area, four main PTs were identified, consisting of shrub land, grass land, semi-shrub land, and shrub land-grass land vegetation. Having developed 21 MLCAs using the same training and validation, datasets led to varying accuracy results. Gaussian process classifier (GPC) was validated as the top-performing classifier, with an overall accuracy (OA) of 90%. GPC follows a Laplace approximation to the Gaussian likelihood under the supervised classification framework, emerging as a very competitive alternative to common MLCAs. Random forests resulted in the second-best performance with an OA of 86%. Two other types of ensemble-learning algorithms, i.e., tree-ensemble learning (bagging) and decision tree (with error-correcting output codes), yielded an OA of 83% and 82%, respectively. Following, thirteen classifiers reported OA between 70% and 80%, and the remaining four classifiers reported an OA below 70%. We conclude that GPC substantially outperformed all classifiers, and thus, provides enormous potential for the classification of a diversity of land-cover types. In addition, its probabilistic formulation provides valuable band ranking information, as well as associated predictive variance at a pixel level. Nevertheless, as these are supervised (data-driven) classifiers, performances depend on the entered training data, meaning that an assessment of all MLCAs is crucial for any application. Our analysis demonstrated the efficacy of ARTMO's MLCA toolbox for an automated evaluation of the classifiers and subsequent thematic mapping.

摘要

准确的植物类型(PT)检测是可持续土地管理、维护生物多样性和生态系统服务的重要基础。从这个意义上说,哥白尼计划的哨兵 - 2 卫星图像具有空间、光谱、时间和辐射特性,在绘制和监测植物类型方面具有巨大潜力。此外,为了尽可能准确地获得植物类型分类,需要考虑选择性能最佳的算法。迄今为止,还没有一个可免费下载的工具箱能将最新的监督式机器学习分类算法(MLCA)的多样性整合到一个直观、用户友好的图形用户界面(GUI)中。为了填补这一空白并促进和自动化 MLCA 的使用,我们在此展示了一个新颖的 GUI 软件包,它允许系统地训练、验证并将基于像素的 MLCA 模型应用于遥感图像。这个所谓的 MLCA 工具箱已集成到在 Matlab 中开发的 ARTMO 软件框架内,该框架实现了机器学习领域的大多数先进方法。为了证明其效用,我们选择了一个异质的案例研究场景,即伊朗西南部的一片景观来绘制植物类型图。在该地区,确定了四种主要的植物类型,包括灌木地、草地、半灌木地以及灌木地 - 草地植被。使用相同的训练和验证数据集开发了 21 种 MLCA,得到了不同的精度结果。高斯过程分类器(GPC)被验证为性能最佳的分类器,总体精度(OA)为 90%。在监督分类框架下,GPC 对高斯似然采用拉普拉斯近似,成为普通 MLCA 极具竞争力的替代方案。随机森林的性能次之,OA 为 86%。另外两种集成学习算法,即树集成学习(装袋法)和决策树(带纠错输出码),OA 分别为 83%和 82%。随后,有 13 个分类器的 OA 在 70%至 80%之间,其余 4 个分类器的 OA 低于 70%。我们得出结论,GPC 的性能明显优于所有分类器,因此在多种土地覆盖类型的分类中具有巨大潜力。此外,其概率公式提供了有价值的波段排序信息以及像素级的相关预测方差。然而,由于这些是监督式(数据驱动)分类器,性能取决于输入的训练数据,这意味着对所有 MLCA 进行评估对于任何应用都至关重要。我们的分析证明了 ARTMO 的 MLCA 工具箱在自动评估分类器及后续专题制图方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/325d/7613646/865608a3819c/EMS154469-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验