Suppr超能文献

一种基于学习的未知离散事件系统诊断与可诊断性方法。

A Learning-Based Approach for Diagnosis and Diagnosability of Unknown Discrete Event Systems.

作者信息

Bates Ira Wendell, Karimoddini Ali, Karimadini Mohammad

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):5421-5434. doi: 10.1109/TNNLS.2022.3204557. Epub 2024 Apr 4.

Abstract

This article develops a novel active-learning technique for fault diagnosis of an initially unknown finite-state discrete event system (DES). The proposed method constructs a diagnosis tool (termed diagnoser), which is able to detect and identify occurred faults by tracking the observable behaviors of the system under diagnosis. The proposed algorithm utilizes an active-learning mechanism to incrementally collect the information about the system to construct the diagnoser. This is achieved by completing a series of observation tables in a systematic way, resulting in the construction of the diagnoser. It is proven that the proposed algorithm terminates after a finite number of iterations and returns a correctly conjectured diagnoser. The developed diagnoser is a deterministic finite-state automaton. Furthermore, we have proven that the developed diagnoser consists of a minimum number of states. A sufficient condition for diagnosability of the system under diagnosis is derived, which guarantees the diagnosis of faults within a bounded number of observations. The developed method is applied to two case-studies, illustrating the steps of the proposed algorithm and its capability of diagnosing multiple faults.

摘要

本文针对初始未知的有限状态离散事件系统(DES)的故障诊断,开发了一种新颖的主动学习技术。所提出的方法构建了一种诊断工具(称为诊断器),它能够通过跟踪被诊断系统的可观测行为来检测和识别已发生的故障。所提出的算法利用主动学习机制来逐步收集有关系统的信息,以构建诊断器。这是通过系统地完成一系列观察表来实现的,从而构建出诊断器。证明了所提出的算法在有限次迭代后终止,并返回一个正确推测的诊断器。所开发的诊断器是一个确定性有限状态自动机。此外,我们已经证明所开发的诊断器具有最少数量的状态。推导了被诊断系统可诊断性的充分条件,该条件保证在有限数量的观察内诊断出故障。所开发的方法应用于两个案例研究,说明了所提出算法的步骤及其诊断多个故障的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验