Department of Radiology, Yonsei University College of Medicine, Seoul, Korea.
Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.
Korean J Radiol. 2022 Oct;23(10):949-958. doi: 10.3348/kjr.2022.0364.
To investigate the feasibility of using a deep learning-based analysis of auscultation data to predict significant stenosis of arteriovenous fistulas (AVF) in patients undergoing hemodialysis requiring percutaneous transluminal angioplasty (PTA).
Forty patients (24 male and 16 female; median age, 62.5 years) with dysfunctional native AVF were prospectively recruited. Digital sounds from the AVF shunt were recorded using a wireless electronic stethoscope before (pre-PTA) and after PTA (post-PTA), and the audio files were subsequently converted to mel spectrograms, which were used to construct various deep convolutional neural network (DCNN) models (DenseNet201, EfficientNetB5, and ResNet50). The performance of these models for diagnosing ≥ 50% AVF stenosis was assessed and compared. The ground truth for the presence of ≥ 50% AVF stenosis was obtained using digital subtraction angiography. Gradient-weighted class activation mapping (Grad-CAM) was used to produce visual explanations for DCNN model decisions.
Eighty audio files were obtained from the 40 recruited patients and pooled for the study. Mel spectrograms of "pre-PTA" shunt sounds showed patterns corresponding to abnormal high-pitched bruits with systolic accentuation observed in patients with stenotic AVF. The ResNet50 and EfficientNetB5 models yielded an area under the receiver operating characteristic curve of 0.99 and 0.98, respectively, at optimized epochs for predicting ≥ 50% AVF stenosis. However, Grad-CAM heatmaps revealed that only ResNet50 highlighted areas relevant to AVF stenosis in the mel spectrogram.
Mel spectrogram-based DCNN models, particularly ResNet50, successfully predicted the presence of significant AVF stenosis requiring PTA in this feasibility study and may potentially be used in AVF surveillance.
研究基于深度学习的听诊数据分析是否可用于预测行经皮腔内血管成形术(PTA)的血液透析患者动静脉瘘(AVF)狭窄程度≥50%的可能性。
前瞻性招募了 40 名功能障碍性自体 AVF 患者(24 名男性,16 名女性;中位年龄 62.5 岁)。在 PTA 之前(PTA 前)和之后(PTA 后),使用无线电子听诊器记录 AVF 分流的数字声音,并将音频文件转换为梅尔频谱图,用于构建各种深度卷积神经网络(DCNN)模型(DenseNet201、EfficientNetB5 和 ResNet50)。评估并比较这些模型对诊断 AVF 狭窄程度≥50%的性能。使用数字减影血管造影获得 AVF 狭窄程度≥50%的存在的真实情况。使用梯度加权类激活映射(Grad-CAM)为 DCNN 模型决策生成视觉解释。
从 40 名入组患者中获得了 80 个音频文件,并汇总用于研究。“PTA 前”分流声音的梅尔频谱图显示了与狭窄 AVF 患者中观察到的异常高调杂音伴收缩期增强相对应的模式。ResNet50 和 EfficientNetB5 模型在优化的时期预测 AVF 狭窄程度≥50%的曲线下面积分别为 0.99 和 0.98。然而,Grad-CAM 热图显示,只有 ResNet50 在梅尔频谱图中突出了与 AVF 狭窄相关的区域。
在这项可行性研究中,基于梅尔频谱图的 DCNN 模型,特别是 ResNet50,成功预测了需要 PTA 的 AVF 狭窄程度≥50%的存在,并且可能在 AVF 监测中得到应用。