Suppr超能文献

镰刀菌 N-琥珀酰基转移酶(FDB2)在结构、功能和系统发生上与 N-乙酰基转移酶(NAT)同源物明显不同。

Fusarium verticillioides NAT1 (FDB2) N-malonyltransferase is structurally, functionally and phylogenetically distinct from its N-acetyltransferase (NAT) homologues.

机构信息

Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece.

Department of Pharmacology, University of Oxford, UK.

出版信息

FEBS J. 2023 May;290(9):2412-2436. doi: 10.1111/febs.16642. Epub 2022 Oct 18.

Abstract

Fusarium endophytes damage cereal crops and contaminate produce with mycotoxins. Those fungi overcome the main chemical defence of host via detoxification by a malonyl-CoA-dependent enzyme homologous to xenobiotic metabolizing arylamine N-acetyltransferase (NAT). In Fusarium verticillioides (teleomorph Gibberella moniliformis, GIBMO), this N-malonyltransferase activity is attributed to (GIBMO)NAT1, and the fungus has two additional isoenzymes, (GIBMO)NAT3 (N-acetyltransferase) and (GIBMO)NAT2 (unknown function). We present the crystallographic structure of (GIBMO)NAT1, also modelling other fungal NAT homologues. Monomeric (GIBMO)NAT1 is distinctive, with access to the catalytic core through two "tunnel-like" entries separated by a "bridge-like" helix. In the quaternary arrangement, (GIBMO)NAT1 monomers interact in pairs along an extensive interface whereby one entry of each monomer is covered by the N-terminus of the other monomer. Although monomeric (GIBMO)NAT1 apparently accommodates acetyl-CoA better than malonyl-CoA, dimerization changes the active site to allow malonyl-CoA to reach the catalytic triad (Cys110, His158 and Asp173) via the single uncovered entry, and anchor its terminal carboxyl-group via hydrogen bonds to Arg109, Asn157 and Thr261. Lacking a terminal carboxyl-group, acetyl-CoA cannot form such stabilizing interactions, while longer acyl-CoAs enter the active site but cannot reach catalytic Cys. Other NAT isoenzymes lack such structural features, with (GIBMO)NAT3 resembling bacterial NATs and (GIBMO)NAT2 adopting a structure intermediate between (GIBMO)NAT1 and (GIBMO)NAT3. Biochemical assays confirmed differential donor substrate preference of (GIBMO)NAT isoenzymes, with phylogenetic analysis demonstrating evolutionary separation. Given the role of (GIBMO)NAT1 in enhancing Fusarium pathogenicity, unravelling the structure and function of this enzyme may benefit research into more targeted strategies for pathogen control.

摘要

镰刀菌内生真菌会损害谷类作物,并使真菌毒素污染农产品。这些真菌通过一种类似于异生物质代谢芳基胺 N-乙酰基转移酶(NAT)的丙二酰辅酶 A 依赖性酶进行解毒,从而克服宿主的主要化学防御。在轮枝镰孢菌(其有性态为玉蜀黍赤霉 Gibberella moniliformis,GIBMO)中,这种 N-丙二酰转移酶活性归因于(GIBMO)NAT1,并且该真菌还有另外两种同工酶,(GIBMO)NAT3(N-乙酰基转移酶)和(GIBMO)NAT2(未知功能)。我们展示了(GIBMO)NAT1 的晶体结构,还对其他真菌 NAT 同源物进行了建模。单体(GIBMO)NAT1 很独特,通过两个“隧道样”入口进入催化核心,这两个入口由一个“桥样”螺旋隔开。在四元排列中,(GIBMO)NAT1 单体沿着一个广泛的界面相互作用成对,每个单体的一个入口由另一个单体的 N 端覆盖。尽管单体(GIBMO)NAT1 显然更能容纳乙酰辅酶 A 而不是丙二酰辅酶 A,但二聚化会改变活性位点,使丙二酰辅酶 A 通过单个未覆盖的入口到达催化三联体(Cys110、His158 和 Asp173),并通过氢键将其末端羧基基团锚定到 Arg109、Asn157 和 Thr261 上。由于缺乏末端羧基基团,乙酰辅酶 A 不能形成这种稳定的相互作用,而较长的酰基辅酶 A 则进入活性部位但不能到达催化半胱氨酸。其他 NAT 同工酶缺乏这种结构特征,(GIBMO)NAT3 类似于细菌 NATs,而(GIBMO)NAT2 采用介于(GIBMO)NAT1 和(GIBMO)NAT3 之间的结构。生化测定证实了(GIBMO)NAT 同工酶对供体底物的不同偏好,系统发育分析表明它们发生了进化分离。鉴于(GIBMO)NAT1 在增强镰刀菌致病性中的作用,阐明该酶的结构和功能可能有助于研究更具针对性的病原体控制策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验