Suppr超能文献

个体化计算模型在银屑病免疫介导疾病发病、发作和清除中的应用。

Individualised computational modelling of immune mediated disease onset, flare and clearance in psoriasis.

机构信息

School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom.

Department of Computer Science, University of Manchester, Manchester, United Kingdom.

出版信息

PLoS Comput Biol. 2022 Sep 30;18(9):e1010267. doi: 10.1371/journal.pcbi.1010267. eCollection 2022 Sep.

Abstract

Despite increased understanding about psoriasis pathophysiology, currently there is a lack of predictive computational models. We developed a personalisable ordinary differential equations model of human epidermis and psoriasis that incorporates immune cells and cytokine stimuli to regulate the transition between two stable steady states of clinically healthy (non-lesional) and disease (lesional psoriasis, plaque) skin. In line with experimental data, an immune stimulus initiated transition from healthy skin to psoriasis and apoptosis of immune and epidermal cells induced by UVB phototherapy returned the epidermis back to the healthy state. Notably, our model was able to distinguish disease flares. The flexibility of our model permitted the development of a patient-specific "UVB sensitivity" parameter that reflected subject-specific sensitivity to apoptosis and enabled simulation of individual patients' clinical response trajectory. In a prospective clinical study of 94 patients, serial individual UVB doses and clinical response (Psoriasis Area Severity Index) values collected over the first three weeks of UVB therapy informed estimation of the "UVB sensitivity" parameter and the prediction of individual patient outcome at the end of phototherapy. An important advance of our model is its potential for direct clinical application through early assessment of response to UVB therapy, and for individualised optimisation of phototherapy regimes to improve clinical outcome. Additionally by incorporating the complex interaction of immune cells and epidermal keratinocytes, our model provides a basis to study and predict outcomes to biologic therapies in psoriasis.

摘要

尽管人们对银屑病的病理生理学有了更多的了解,但目前缺乏预测性的计算模型。我们开发了一种个性化的人表皮和银屑病的常微分方程模型,该模型纳入了免疫细胞和细胞因子刺激物,以调节临床健康(非皮损)和疾病(皮损银屑病、斑块)皮肤之间的两种稳定状态之间的转变。与实验数据一致,免疫刺激物引发了从健康皮肤向银屑病的转变,而 UVB 光疗诱导的免疫和表皮细胞凋亡则使表皮恢复到健康状态。值得注意的是,我们的模型能够区分疾病发作。我们模型的灵活性允许开发一个特定于患者的“UVB 敏感性”参数,该参数反映了个体对细胞凋亡的敏感性,并能够模拟个体患者的临床反应轨迹。在一项对 94 名患者的前瞻性临床研究中,在 UVB 治疗的前三周内收集的个体 UVB 剂量和临床反应(银屑病面积严重程度指数)值,用于估计“UVB 敏感性”参数,并预测光疗结束时个体患者的结局。我们模型的一个重要进展是,它有可能通过早期评估对 UVB 治疗的反应,以及通过个性化优化光疗方案来改善临床结果,从而直接应用于临床。此外,通过纳入免疫细胞和表皮角质形成细胞的复杂相互作用,我们的模型为研究和预测银屑病生物疗法的结果提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9da7/9524682/dee3077556a7/pcbi.1010267.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验