Danish Fundamental Metrology, Kogle Allé 5, 2970, Hørsholm, Denmark.
Institute of Optics and Atomic Physics, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
Sci Rep. 2022 Sep 30;12(1):16436. doi: 10.1038/s41598-022-20850-z.
The worldwide increase of antimicrobial resistance (AMR) is a serious threat to human health. To avert the spread of AMR, fast reliable diagnostics tools that facilitate optimal antibiotic stewardship are an unmet need. In this regard, Raman spectroscopy promises rapid label- and culture-free identification and antimicrobial susceptibility testing (AST) in a single step. However, even though many Raman-based bacteria-identification and AST studies have demonstrated impressive results, some shortcomings must be addressed. To bridge the gap between proof-of-concept studies and clinical application, we have developed machine learning techniques in combination with a novel data-augmentation algorithm, for fast identification of minimally prepared bacteria phenotypes and the distinctions of methicillin-resistant (MR) from methicillin-susceptible (MS) bacteria. For this we have implemented a spectral transformer model for hyper-spectral Raman images of bacteria. We show that our model outperforms the standard convolutional neural network models on a multitude of classification problems, both in terms of accuracy and in terms of training time. We attain more than 96% classification accuracy on a dataset consisting of 15 different classes and 95.6% classification accuracy for six MR-MS bacteria species. More importantly, our results are obtained using only fast and easy-to-produce training and test data.
世界范围内抗菌药物耐药性(AMR)的增加对人类健康构成了严重威胁。为了防止 AMR 的传播,快速可靠的诊断工具,促进最佳的抗生素管理,是一个尚未满足的需求。在这方面,拉曼光谱学有望在一步之内实现快速、无标签和无培养的细菌鉴定和抗菌药物敏感性测试(AST)。然而,尽管许多基于拉曼的细菌鉴定和 AST 研究已经证明了令人印象深刻的结果,但仍有一些缺点需要解决。为了弥合概念验证研究与临床应用之间的差距,我们结合了机器学习技术和一种新颖的数据增强算法,用于快速识别经过最少预处理的细菌表型,并区分耐甲氧西林(MR)和甲氧西林敏感(MS)细菌。为此,我们为细菌的高光谱拉曼图像实现了一个光谱转换器模型。我们的模型在准确性和训练时间方面都优于标准卷积神经网络模型,在多种分类问题上表现出色。我们在包含 15 个不同类别的数据集上获得了超过 96%的分类准确性,在 6 种 MR-MS 细菌物种上获得了 95.6%的分类准确性。更重要的是,我们仅使用快速且易于生成的训练和测试数据获得了这些结果。