School of Data Science, City University of Hong Kong, Hong Kong, SAR, China.
Center on Aging Psychology, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
J Affect Disord. 2022 Dec 15;319:428-436. doi: 10.1016/j.jad.2022.09.034. Epub 2022 Sep 20.
The prevalence of depression among China's elderly is high, but stigma surrounding mental illness and a shortage of psychiatrists limit widespread screening and diagnosis of geriatric depression. We sought to develop a screening tool using easy-to-obtain and minimally sensitive predictors to identify elderly Chinese with depressive symptoms (depression hereafter) for referral to mental health services and determine the most important factors for effective screening.
Using nationally representative survey data, we developed and externally validated the Chinese Geriatric Depression Risk calculator (CGD-Risk). CGD-Risk, a gradient boosting machine learning model, was evaluated based on discrimination (Concordance (C) statistic), calibration, and through a decision curve analysis. We conducted a sensitivity analysis on a cohort of middle-aged Chinese, a sub-group analysis using three data sets, and created predictor importance and partial dependence plots to enhance interpretability.
A total of 5681 elderly Chinese were included in the development data and 12,373 in the external validation data. CGD-Risk showed good discrimination during internal validation (C: 0.81, 95 % CI 0.79 to 0.84) and external validation (C: 0.77, 95 % CI: 0.76, 0.78). Compared to an alternative screening strategy CGD-Risk would correctly identify 17.8 more elderly with depression per 100 people screened.
We were only able to externally validate a partial version of CGD-Risk due to differences between the internal and external validation data.
CGD-Risk is a clinically viable, minimally sensitive screening tool that could identify elderly Chinese at high risk of depression while circumventing issues of response bias from stigma surrounding emotional openness.
中国老年人的抑郁患病率很高,但精神疾病的污名化和精神科医生的短缺限制了对老年抑郁症的广泛筛查和诊断。我们试图开发一种使用易于获取且敏感性最低的预测因素的筛查工具,以识别有抑郁症状的中国老年人(以下简称抑郁症),将其转介到心理健康服务机构,并确定有效筛查的最重要因素。
我们使用全国代表性调查数据开发并外部验证了中国老年抑郁风险计算器(CGD-Risk)。CGD-Risk 是一种梯度提升机器学习模型,基于判别(一致性(C)统计量)、校准和决策曲线分析进行评估。我们对中年中国人的队列进行了敏感性分析,对三个数据集进行了亚组分析,并创建了预测因素重要性和部分依赖关系图,以增强可解释性。
共有 5681 名中国老年人被纳入开发数据,12373 名被纳入外部验证数据。CGD-Risk 在内部验证(C:0.81,95%置信区间 0.79 至 0.84)和外部验证(C:0.77,95%置信区间:0.76,0.78)中均显示出良好的判别能力。与替代筛查策略相比,CGD-Risk 每筛查 100 人可正确识别出 17.8 名以上患有抑郁症的老年人。
由于内部和外部验证数据之间的差异,我们只能对外部分割的 CGD-Risk 版本进行验证。
CGD-Risk 是一种可行的、敏感性最低的筛查工具,可识别出有高抑郁风险的中国老年人,同时避免了因对情感开放的污名化而产生的反应偏差问题。