Zechini Luigi, Camilleri-Brennan Julian, Walsh Jonathan, Beaven Robin, Moran Oscar, Hartley Paul S, Diaz Mary, Denholm Barry
Deanery of Biomedical Sciences, Edinburgh Medical School, Edinburgh University, Edinburgh, United Kingtom.
Centre for Inflammation Research, Deanery of Clinical Sciences, Edinburgh Medical School, Edinburgh, United Kingtom.
Front Physiol. 2022 Sep 14;13:1003999. doi: 10.3389/fphys.2022.1003999. eCollection 2022.
Throughout its lifetime the heart is buffeted continuously by dynamic mechanical forces resulting from contraction of the heart muscle itself and fluctuations in haemodynamic load and pressure. These forces are in flux on a beat-by-beat basis, resulting from changes in posture, physical activity or emotional state, and over longer timescales due to altered physiology (e.g. pregnancy) or as a consequence of ageing or disease (e.g. hypertension). It has been known for over a century of the heart's ability to sense differences in haemodynamic load and adjust contractile force accordingly (Frank, Z. biology, 1895, 32, 370-447; Anrep, J. Physiol., 1912, 45 (5), 307-317; Patterson and Starling, J. Physiol., 1914, 48 (5), 357-79; Starling, The law of the heart (Linacre Lecture, given at Cambridge, 1915), 1918). These adaptive behaviours are important for cardiovascular homeostasis, but the mechanism(s) underpinning them are incompletely understood. Here we present evidence that the mechanically-activated ion channel, Piezo, is an important component of the heart's ability to adapt to mechanical force. We find Piezo is a sarcoplasmic reticulum (SR)-resident channel and is part of a mechanism that regulates Ca handling in cardiomyocytes in response to mechanical stress. Our data support a simple model in which Piezo transduces mechanical force such as stretch into a Ca signal, originating from the SR, that modulates cardiomyocyte contraction. We show that mutant hearts fail to buffer mechanical stress, have altered Ca handling, become prone to arrhythmias and undergo pathological remodelling.
在其整个生命周期中,心脏不断受到动态机械力的冲击,这些力源于心肌自身的收缩以及血流动力学负荷和压力的波动。这些力在逐搏基础上不断变化,起因于姿势、身体活动或情绪状态的改变,在更长的时间尺度上则是由于生理变化(如怀孕)或衰老或疾病(如高血压)的结果。一个多世纪以来,人们已经知道心脏有感知血流动力学负荷差异并相应调整收缩力的能力(弗兰克,《生物学杂志》,1895年,32卷,370 - 447页;安雷普,《生理学杂志》,1912年,45(5),307 - 317页;帕特森和斯塔林,《生理学杂志》,1914年,48(5),357 - 379页;斯塔林,《心脏定律》(1915年在剑桥发表的林纳克讲座),1918年)。这些适应性行为对心血管稳态很重要,但其背后的机制尚未完全了解。在这里,我们提供证据表明,机械激活离子通道Piezo是心脏适应机械力能力的重要组成部分。我们发现Piezo是一种驻留于肌浆网(SR)的通道,并且是响应机械应力调节心肌细胞钙处理机制的一部分。我们的数据支持一个简单的模型,即Piezo将诸如拉伸等机械力转化为源自SR的钙信号,该信号调节心肌细胞收缩。我们表明,突变心脏无法缓冲机械应力,钙处理发生改变,容易发生心律失常并经历病理性重塑。